N 70 42156
CR 110789

ALGORITHMIC ASPECTS OF
SEQUENTIAL DECODING
by John M. Geist
Technical Report No. EE- 7C2

August 1970

Depariment of

ELECTRICAL ENGINEERING

UAY:] UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA

ALGORITHMIC ASPECTS OF
SEQUENTIAL DECODING
by John M. Geist
Technical Report No. EE- 7€2

August 1970

Department of Electrical Engineering

University of Notre Dame, Notre Dame, Indiana 46556

This work was submitted to the Graduate School of the University of
Notre Dame in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

This work was supported by the National Aeronautics and Space Administration
under NASA Grant NGL 15-004-026 in liaison with the Flight Data Systems
Branch of the Goddard Space Flight Center.

ABSTRACT

Sequential decoding procedures are studied in the context of
selecting a high-value path through a metric tree. Several algorithms
are considered and their properties compared. For the conventional
Fano algorithm, it is noted that the difficulty in decoding depends
on the minimum node value along fhe correct path. This minimum is
a random variable and it can be modeléd in terms of Markov chains.
‘Some properties of such Markov chains are studied.

A stack algorithm introduced by Zigangirov and independently by
Jelinek is presented, and it is shown that this algorithm is essen-
tially equivalent to the Fano algorithm with regard to the set of
nodes examined and the path selected, although the‘description and
action of the two algorithms are quite different.

A modified Fano algorithm is introduced, in which the quantizing
parameter A is eliminated and decisions are based on exact node
values rather than on quantized values. While the new algorithm is
computationally inferior to the old (in cases studied so far), it is
of some theoretical interest since the conventional (quantized) Fano
algorithm may be considered to be a quantized version of it.

Extensive computer simulations comparing the Fano algorithm with
a quantized Zigangirov-Jelinek algorithm are reported. The conclusion
of these comparisons is that at rates near RComp the stack algorithm
offers an advantage over the Fano algorithm in decoder speed, but it
requires large storage to be available for use by the decoder.

Finally, the possibility of using sequential tree search algorithms

for searching more general graphs is investigated.

ACKNOWLEDGEMENT

I am deeply indebted to Professor James L. Massey for his
patient support during the course of my research. This work would
have been impossible without his guidance, suggestions, and
encouragement. My association with him has been one of my most
rewarding experiences.

In addition, many of Professor Massey's present and former
students have been very helpful; among these, special mention is due
Daniel J. Costello, Jr., William F. Hartman, and Jian K. Chang.

I am grateful also to Professor R. J. Leake for some helpful

comments and suggestions with respect to the material in Chapter IV.

CONTENTS

Acknowledgement

I. INTRODUCTION
A. Convolutional Codes
B. Sequential Decoding

II. ALGORITHMIC PROPERTIES OF SEVERAL SEQUENTIAL
DECODING PROCEDURES
A. The Fano Algorithm
1. Search Properties of the Fano Algorithm
2. Computation Along the Final Path
B. The Zigangirov-Jelinek Algorithm
C. A New Unquantized Fano Algorithm

III. EXPERIMENTAL COMPARISON OF SEQUENTIAL DECODING
ALGORITHMS

IV. APPLICATIONS OF SEQUENTIAL SEARCH ALGORITHMS

TO GRAPH-SEARCHING PROBLEMS

A. Optimum Graph Searching

B. Suboptimum Graph Searching--Sequential
Searching
1. The Path Tree of a Graph
2. Using Remergers to Improve Performance
3. Biasing Branch Values

C. . An Example

APPENDIX A: Summary of the Lower-bound Argument
for Pr{Cy 2 N}

APPENDIX B: The Jelinek Decoder Program

REFERENCES

ii

[T

17
17
19
22
36
45

66
89
90
91
92
94
101
102
106

111

118

CHAPTER I

INTRODUCTION

Communication systems employing convolutional encoding at the
input and sequential decoding at the output of certain noisy channels
are among the most attractive means of approaching the reliability of
communication promised by the coding theorem. In this chapter
convolutional codes are discussed briefly, and then sequential
decoding is described informally. Some well-known results on sequen—

tial decoding are presented and heuristically treated.

1. A. CONVOLUTIONAL CODES

A general single-input rate % convolutional encoder is displayed
in Figure 1. A single information sequence of symbols from some finite
field GF(q) is fed into the encoder from the 1eft.and two output
sequences are transmitted. We may think of the output sequences as
being commutated to form a single transmitted sequence, or as being

transmitted over two identical channels. The polynomials

- (D () (p2 , ... (Lpm
Gl(D)—zzO t g, D+g, DT+ +g D
_ (2) (2) (2).2 (2) m
G,(D) =gy~ *+ g "D +g, "D+ v, D

(1) (1) (1) (1)
g0> g &5 gs

w = o i
[) -- Unit delay element
<:::> -- Constant multiplier
(23] -- Mod-q adder

FIGURE 1. A Single-input Rate % Convolutional Encoder.

FIGURE 2. A Binary Rate % Systematic Encoder of Memory 2.

are called code-generating polynomials and m is called the memory of

the encoder. For well-chosen G1 and G, the received sequence, when

2
not too severely corrupted by channel noise, can be processed after
reception and the original information sequence recovered.

The dependence of transmitted symbols upon a span of past infor-
mation symbols gives rise to a natural representation of the output of
a convolutional encoder in the form of a tree. This tree is rooted at
an origin node which has no predecessor, while every other node has
exactly one predecessor. Every node has exactly two successors (for
single-input encoders), and there is a one-to-one correspondence

between the set of paths through the tree and the set of possible

information sequences. As an example, consider the encoder of Figure

2, a rate % binary encoder of memory 2 with Gl(D) 1 and

1 is that the

G,(D) = 1 + D + D°. The effect of choosing G, (D)
information sequence appears explicitly in the encoder output. Codes
having this property are called systematic. The tree of Figure 3

shows the set of all possible encoder outputs, i.e., the code. At each
node in the tree the symbols along the upward and downward emanating
branch correspond to the output when a zero and one, respectively, is
inserted into the encoder, given that the past information bits fed

into the encoder were the bits designated by the path to that node.

For example, the information sequence 0 1 0 1 - - - -+ causes an
encoded sequence 00 11 01 10 - - - - , as shown by the bold path in
Figure 3.

It is precisely this tree structure of convolutional codes which
makes them well-suited to sequential decoding, as we shall see later.

Another graphical model of convolutional codes is suggested by

00 _
00
- T —

00 7
. 10

01
10

0g 10

1 —

00

11

10
01

01
10

00 i
11

00

FIGURE 3. Code Tree for the Encoder of Figure Z.

FIGURE 4. Code Trellis for the Fncoder of Figure 2.

the fact that the dependence of the encoder outputs upon past infor-
mation symbols extends only over a finite span of past inputs. If

two information sequences io, il’ T iu and ib, ii, teey i& differ
only in the first u-m+1 places, the portion of the code tree extending
out from the node at the end of the path specified by the first
sequence is identical to that extending out from the node at the end
of the path specified by the second. Thus there is no need to dis-
tinguish between these two nodes, and the code tree can be collapsed
to a trellis by identifying such nodes. More formally, we may con-
sider the nodes in the trellis to be equivalence classes of nodes in
the tree under the relation:

the encoder state is the same at 81
and Sp; and

S; and S, are at the same depth in
the tree.

The result of collapsing the tree of Figure 3 by identifying nodes at
the ends of paths which agree in the last m=2 places is the trellis of
Figure 4. Again the output sequence is the sequence of symbols along
the path determined by the information sequence, but in the trellis,
paths which initially differ will remerge if the corresponding infor-
mation sequences agree in m consecutive places. The trellis model for
convolutional codes was suggested by Forney[l].

As we remarked before, the tree model is the more natural model
for convolutional codes when we are studying the action of a sequential
decoder. The trellis model is convenient when studying probability of
error, however, and in addition we shall see in Chapter IV that one
can meaningfully discuss the action of a sequential decoder operating

on such a trellis.

1. B. SEQUENTIAL DECODING

In decoding a received sequence, one desires to select from among
the transmitted sequences which make up the code, the one which most
likely would have been transformed by channel noise into the given
received sequence. Of course, one could just as well produce this
sequence by eliminating unlikely sequences until only a single
sequence remains, if this turns out to be more convenient.

(21

Wozencraft noted that in applying this rejection technique to codes
having the tree structure discussed before, the number of sequences
rejected is a fraction of the total number of codewords which, roughly
speaking, grows exponentially with the '"earliness'" of rejection.

More exactly, rejection of a path on the basis of the fact that the
transmitted sequence along its first k branches is unlikely to have
been corrupted by noise into the corresponding segment of the received
sequence is tantamount to rejecting every path beginning with tHese

k branches, namely 1/uk of the paths in the tree, where u is the
number of branches emanating from each node. Wozencraft termed his
procedure for exploiting this property '"sequential decoding."

Jacobs and Berlekamp[3] have given two conditions which a
decoding algorithm must satisfy in order to qualify as a sequential
decoding algorithm:

JB1: The decoder performs at least one computation
for each node it examines.

JB2: Decisions the decoder makes about searching new
parts of the tree are made only on the basis of

information about nodes already examined, and not
about nodes in the unexplored part of the tree.

The sequential decoding procedures we will be concerned with could be

termed "metric-based"; that is, search decisions are based on values,
called metrics, which are assigned to every branch in the code tree.
These values are, for memoryless channels, generally taken to be:

N ' -

g = Z[logfﬁ_{ﬁﬂﬁl - B] (1)

j=1 f(rj)
where X; is the jth code symbol on the branch, T is the corresponding
symbol in the received sequence, f(.) is the nominal received symbol
probability function, N is the number of code symbols per branch, and
B is a bias term. The bias is chosen in such a way that, on the
average, values of branches along the correct path are positive, while
values of other branches are negative. Nodes are assigned values
equal to the sum of the branch values along the path leading to the
node. With our choice of bias, it is clear that on the average, node
values along the correct path will increase with depth into the tree,
while node values along incorrect paths will decrease. The decoder
strategy is then to look for a path of increasing value.

The difficulty the decoder encounters in searching for such a
path depends on the various branch values, which are in turn determined
by the channel noise. Define Cy to be the number of computations the
decoder performs while examining nodes such that the first branch of
the path leading to the node is not the first branch of the correct
path. Then Cy is a random variable, and its statistics are of impor-
tance in determining the practicability of sequential decoding. In
particular, we would like to know hbw rapidly the quantity Pr{Cy>N}
decreases as N increases. We might hope, for example, that this
quantity decreases exponentially with N. The following discussion

shows that this is not the case.

Consider using a rate * code on a binary symmetric channel
with crossover probability p (see Figure 5). Assume thét the code is
complementary; that is, at every node the symbols on the zero branch
emanating from that node are complements of the symbols on the one
branch. From (1), the branch metrics have the form:
2 logl[2(1-p)] - 2B, if both symbols agree

logl2(1-p)] + logl2p] - 2B, if one agrees and
one disagrees

2 log[2p] - 2B, if both disagree

Denote these three values ZO’ Zys and Z,

Z, < zq <z (assuming 0 < p < %). By the group property of con-

respectively, and note that

volutional codes, % of the branches at any depth in the tree have
branch metric zg, % have branch metric zq, and % have branch metric
z3. Hence the requirement that the branch metric be negative on the

average for branches not on the correct path reduces to:

Moreover we must have zg < 0 if the average metric on the correct
path is to be positive. Hence 2y < 2zq < 0 < Z2q- Since the code is

comPlementary, at each node the two exiting branch metrics are either

-

zy and z5 or z; and zy.

Suppose that channel noise causes the node values along the
correct path to decrease with depth initially before becoming positive
and increasing through the rest of the tree. Let the minimum node
value along the correct path be -Q, where Q > 0. It can be shown that
the probability of this event, for large Q, varies as e‘TQ, where T is

a positive constant. Call that part of the tree composed of paths

beginning with the first incorrect branch, the incorrect half-tree.

Now by .JB2, the decoder must examine cvery path in the incorrect
half-tree at least as far as the first node whose value is less than
-Q, because it cannot determine before that point which of the paths

is increasing. Therefore the number of nodes examined in the

incorrect half-tree is at least as great as the number of such nodes
which are connected to the origin by paths along which each node has
value greater than -Q. Let us denote this number M(Q). We now claim
that the metric tree configuration which minimizes M(Q), for any Q, is
that in which the first incorrect branch has value z) and every other
branch in the incorrect half-tree has value zq; that is, the tree

shown in Figure 6%. To see that this is so, note that any other metric
tree configuration differs from this one in one or both of these ways:
(1) the first incorrect branch has value different from z,; (2) at some
nodes in the incorrect half-tree, the exiting branch metrics are z;

and z, instead of z; and z;. Starting with the tree of Figure 6, it .
is possible to make successive changes, each of which does not decrease
M(Q), and which transform the original tree into any tree we please,

a§ deep into the tree as necessary. For example, Figure 7 shows how
the tree of Figure 6 can be transformed into that of Figure 7f. In
going from a to b, the value of every node in the incorrect half-tree
is increased by z7 - zp; hence Mp(Q) 2 M;(Q). To go from b to ¢, con-
sider interrupting the tree at node A, shifting the part of the tree
rooted there one step to the right, and inserting a new branch of
value zg5. The nodes in the region enclosed by the dashed line have

higher values than their counterparts in tree b, so M.(Q) 2 My, (Q) .

* A somewhat similar argument was used by savagel4], who noted
that a tree in which every branch in the incorrect half-tree has
value z, overbounds M(Q).

1-p

FIGURE 5. The Binary Symmetric Channel,

z1
2
Zl,
21

Z1 z1
Z1

Z1

FIGURE 6. The Optimum Configuration of the Incorrect
Half-tree.

10

11

(a) (b)

(e) (£

FIGURE 7. Steps in Showing That the Configuration of Figure 6 is
Optimum,

12
Now adding another branch at node A and rooting a tree of branches of
value zq does not affect the ether nodes; se My(Q) 4 MC(Q); The same
process leads through steps e and f, so finally, M:(Q) z M,(Q. It is
clear that this process can be extended as far into the tree as
necessary.
We are now prepared to lower-bound Pf{CO 2 N} for the case under

consideration. It is clear that for the tree of Figure 6,

M(Q) z 2['(Q+ZZ)/Z].-' 2 kz“Q/Zl for some k

where |x) indicates the integer part of x. "Now by JB1, Co z M(Q).
Thus for large Q (and hence large N),
pric, 2 x2"Q/Z1} 2 Pr{minimum along correct path = -Q}
=~ @ ~rQ
Putting N = k2~ ¥z1 yields Q = K(In N - 1n k), and hence
Pr{Cy 2 N} 2 e-TK(In N - In k) , N-0 35 N+ =,

This shows that the combined effects of exponential growth of the
number of nodes and exponential decay of having to examine them results
in a distribution of computation which decreases at most algebraically.
A distribution of this form is called Pareto.

In a more rigorous and less restricted derivation than this one,
Jacobs and Berlekamp[s] have shown that for any decoding algorithm
satisfying JB1 and JB2, the distribution of computation (conditioned
on correct decoding) is essentially Pareto. To state their result
precisely, consider operating on a discrete memoryless channel with

K inputs and J outputs, transition probabilities P(j|k), and input

13

distribution Q = {Q(k), k=1,2,+--,K}. Define

J K . .
B) = max {-log] [| qapGj)"/) 11%y oo (2)
Q j=1 k=1 -

R, = Eo(p)/p (3)

Jacobs and Berlekamp show that the computation required to decode the

first A branches, C(A), has a distribution satisfying

Pr{C(A) 2 N} 2 NPe-O/In'N

where p is the solution of R = Rp, and 0¥In N is a quantity varying
with vIn N. The number A depends on N, but the dependence is asymp-
totically unimportant.

A summary of Jacobs and Berlekamp's argument, with a minor
modification allowing the deduction of a lower bound on Pf{CO z N}

of the form
Pr{Cyp 2 N} Z F(N)N"P 4)

where F(N) is a slowly-varying function of N, is given in Appendix A.

Our derivation of a lower bound to the distribution of computation,
as well as Jacobs and Berlekamp's, assume that the tree being searched
is infinite in extent. In many practical applications, and in mest of
the sequel, it is assumed that the tree is finite, consisting of L
levels. We now investigate the effect of this truncation on the
distribution of computation.

First we modify slightly and generalize the definition of C, and
take C; to be the number of computations the decoder performs at the

J
jth node of the correct path and at nodes such that the first j branches

14
of the path leading to the node are the first j branches of the correct
path, but the (j+1)st is not. Thus all computations performed in the
incorrect part of the tree stemming from the jth node on the correct
path, as well as the computations at the jth node on the correct path,
are counted in Cj' Now for any L > 0, let Cj(L) be the number of
computations of the kind counted in Cj which are performed before the

decoder makes its first move to any node at depth L. It is clear that

Cj(L) s Cj for all j and L. In particular, Cy(L) S CO’ and so
Pr{Cqo(L) 2 N} s Pr{Cp 2 N} (5)

for any L and N.

Since the decoder can make only finitely many computations before
moving to depth L, there is some N* such that Pf{CO(L) 2 N*} = 0, On
the other hand, for fixed Cj, the sequence of random variables Co (L),
L=1,2, -+ converges in probability to Cy. The result is that

there exists an intermediate range of N for which
Pr{Cy(L) Z N} = Pr{Cy 2 N} (6)

so that the lower bound (4) applies to the truncated computation CO(L)
in this range, while for greater values of N, Pf{CO(L) 2 N} = 0.
(This is discussed more precisely in Appendix A.)
Now for a tree of L levels, the total number of computations
performed in decoding is
L=l
Eocj(L)

J

A measure of difficulty in decoding that is easy to compute experimen-

tally is the average number of computations per decoded branch,

15

1

L-1
Cay(W) = ¢ jgo ¢, (1) ™

v

We now relate Pf{CAV(L) 2 N} to our known results, If Co(L) 2 NL,

then Cpy(L) 2 N. Hence if N is such that NL falls within the range
for which (6) holds, then

Pr{Cy(L) 2 N} = Pr{Co 2 NL} (8)
so that
Pr{Cay(L) 2 N} 2 N"°L7PF(NL) (9)

by virtue of (4) and (8).

We can also upper-bound the distribution of CAv(L) by noting that

if CAV(L) 2N, fhen for some j, Cj(L) Z N. Hence by the union bound,
. L—l .
PriC,, (L) z N} £ jZOPr{Cj(L) 2 N} (10)

Now since the effect of truncation is enhanced as we move deeper into

the tree, we have

Pr{Cp(L) 2 N} 2 Pr{C;(L) 2N}, 0 % j S L-1 (11)
Hence, using (11) in (10), and using (5) in the result,
Pr{Cpy(L) 2 N} £ LPr{Cy 2 N} (12)

To recapitulate, we have shown that the distribution of the
average computation per decoded branch in a finite tree is upper-
bounded in accordance with (12). Further, for N in a range dependent
on L, the existence and limits of which are discussed in Appendix A,

the distribution satisfies the Pareto lower bound of (9), which has

16
the same Pareto exponent as the distribution of Cp. It follows that
for an intermediate range of N, Cpy(L) is Paretow-distributed with the

same exponent as Cg,.

CHAPTER 11

ALGORITHMIC PROPERTIES OF SEVERAL
SEQUENTIAL DECODING PROCEDURES

In this chapter we investigate and compare some search properties
of three sequential decoding algorithms: the standard Fano!5] algorithm;
a stack algorithm recently introduced by Zigangirov[6] and Jelinek[7];
and a new modified version of the Fano algorithm which appears to be

chiefly of theoretical interest.

2. A. THE FANO ALGORITHM

Subsequent to Wozencraft's introduction of sequential decoding, a
number of alternative sequential decoding techniques were introduced,
the best known of which is the algorithm proposed by Fanol5] in 1963.
The Fano algorithm remains the most popular sequential decoding method,
for both practical and theoretical purposes, even today. We assume
the reader’'s familiarity with the algorithm in the form of Figure 8.
(Readers unfamiliar with the algorithm will find a discussion in

[8]

Wozencraft and Jacobs or with a somewhat different viewpoint in
Gallager[g].} In Fano's original work, the test for first visit at a
node was performed by means of a flag. Gallager has observed ([9],

p. 270) that in every case in which the threshold actually has to be

17

18

V=20
T=20
] |
LOOK FORWARD LOOK FORWARD ON
ON BEST BRANCH NEXT BEST BRANCH

|

L

LOOK

BACK

MOVE
FORWARD

V+bF >V no

MOVE

BACK
DECREMENT V-bg >V
T BY A

FIRST
VISIT ?

IS THERE

AN A NEXT BEST
yes BRANCH °?
TIGHTEN T|
A%

<

<
bF: Forward branch value
bB: Backward branch value

FIGURE 8. Fano Sequential Decoding Algorithm.

increased upon a new arrival, the threshold would have been tight at
the previous nede, so that the flowchart of Figure 9 is equivalent to
that of Figure 8.

In constructing the metric tree to be searched, we place an
imaginary branch of infinite metric leading into the origin node.

This branch serves as an origin test since any time the decoder is
positioned at the origin and enters the LOOK BACK box of Figure 9, the
subsequent test always fails and no attempt is ever made to move back
from the origin.

Since the Fano algorithm satisfies conditions JB1 and JB2, the
computation a Fano decoder performs must have a distribution which
satisfies the lower bound (I-4) (assuming infinite trees). It has
been shown that the Fano decoder meets this lower bound asymptotically.
Several investigators have contributed to this result, including
Savage[4], Falconer[lo], and Jelinek[lll, who credits an important part
of his argument to Yudkin. In addition, Yudkin[lz] has shown that the
probability of error with the Fano decoder is optimal for sufficiently
high rates, and near-optimal for lower rates. These two results, along
with the ease of implementation of this procedure, account for the

widespread interest the Fano algorithm has attracted.

2. A. 1. Search Properties of the Fano Algorithm

We now describe the set of nodes searched by the Fano algorithm
and the path ultimately found by this procedure. The results of this

[13] and are stated here for

section are due to Massey and Sain
reference.
Let sq be some node in level d of the value tree and let V(sy)

denote the likelihood value at node sg. Suppose sy, Sq41s --+5 S|,

19

(START >

\Y
T

1

0
0

20

LOOK FORWARD
ON BEST BRANCH

LOOK FORWARD ON
NEXT BEST BRANCH

MOVE
FORWARD

V+bF >V

V'.'-bB<T+A?

yes

|

TIGHTEN Tl

no

DECREMENT
T BY A

L

LOOK
BACK

€S

MOVE
BACK

V-bB -+ V

IS THERE
A NEXT BEST
BRANCH ?

FIGURE 9. Fano Algorithm with Gallager's Threshold-tightening Test.

21
are the nodes along some path from sq to the end of the tree. If we
say that the path violates some threshold T if for some j, d § j 5 L,
V(sj) < T, and that the path satisfies every threshold it does not
violate, then the tightest threshold satisfied by the path sy, sq.1,
°y SL is

1 min v(sj){a

A dSjsL
where |x| denotes the greatest integer not greater than x. The path

selected by the Fano decoder is the path 56, si, caey, si defined by the

following iterative conditions:

F1. 58 is the origin node.

F2: For 0 £ i < L, the branch from s; to s;+1 is the
first branch-of that path from s¥ to the end of the
tree for which the tightest threshold satisfied is
greatest; if two paths s¥, sj,1, **°, s and~s§,

s s! are tied, then whichever of the two

1 IR
i+l’ > 7L

first branches is ordered higher is the branch from

* *
Si to Si+1.

Rules F1 and F2 specify a unique path through the tree, and this is the
path the decoder will eventually select.

Having determined which path the decoder will choose, we can
specify which nodes off that path are ever examined during decoding.

For 0 £ b £ L, let Tf denote the highest threshold satisfied by the

final path segment from sf to sy; that is,
Ty = |1 min V(s1)| s (1)
A pEjs

Let sq be any node in level d of the tree not on the final path, and

22
let sf be the deepest node shared by the final path and the path to sgy.
Then the path te sg is $52 S1» """ S§s Spy1» "' 7s Sq+ The Fano

decoder will move to sy if

V(sk] T

b + A for all k, b+1 £ k

n
[a%

The decoder will not ever be positioned at sy if

V(s) < Tg for some k, b+l £ k £ d

In the remaining case, namely V(sy) 2 Tg for all k, b+1 £ k £ d, but
for some such k, V{(sk) < Tg + A, the decoder will search to sy if the
branch from Sp to sy,q 1s ordered better than the branch from sf to
Sh+1-

Finally, the number of forward looks along the best branch b;

stemming from a node s} on the chosen path is

[Y(s{) - |1 min V(sy J . 1
A A isjsL
If the branches stemming from sf are bl’ b2, SR bn in order of value

and s(k) is the successor of s; along by, then the number of forward

looks along by, k > 1, is

K igjsL

m1n{V(sl), V(s(k 1))} _ [1_ min V(s?)J
A

if sfﬁll) s¥i1 and one greater than this number otherwise.

2. A. 2. Computation Along the Final Path

A sensible definition of a '"computation" for the Fano sequential
decoder is an entry of either of the LOOK FORWARD boxes of Figure 9.

In this section we investigate the number of computations performed

23
at nodes aleng the final path. From our statements at the end of the
last section, it is apparent that we sheuld investigate the behavior
of the functien

Q(sy) = V(sj) = min V(s¥)
dgjsb
where sa, s§+1, caey, si are the nodes on the segment of 'the final path
extending from sj to the end of the tree. Note that Q(sa) 2 0.

It will be convenient to consider our branch metrics as being
integer-valued. The actual metrics can be scaled and rounded to
integers within any desired degree of accuracy, and in fact this would
normally be done in a real decoder. We therefore assume that the
branch metrics take on values in some finite set of integers'{rl, r,,
tee, rM}. We study the function Q from two points of view. First,
we introduce a graphical technique for computing Q(sa)-at every node
53 when a particular channel error pattern is given; this method
shows the manner in which the occurrence of clusters or bursts of
errors compounds the difficulty in decoding. Second we consider Q(sa)

as a random variable and study a statistical model for it.

2.A.2.a. Q(sz) for given error patterns. Suppose that Q(s§) is

known and we wish to find Q(s}_i). Since the error pattern is given,
we can find z4, the value of the branch from sj_; to sj. We distinguish
two cases:

Case 1: Q(Sﬁ) = 0. In this case, V(s*) = min V(s;) . Ifz4 20,

d” gs5sL
= * . 3 *
then V(Sasl) V(sd) zg € ?;Echsj)’ S0
V(s§. 1] = min V(S}) and hence Q(sj_q) = 0. If, on the

de15jSL
other hand, zg < 0, V(sa;l) > V(sa), and therefore

mig V(sj) = min V(s?) = V(sa). Hence Q(sg_l) = «24.
d-1sjsL dsjsL _

24

Case 2: Q(sj) > 0. Now V(s}) > .mén V(s*). If z4 3 0, then

d;ng]
V(s§] 2 V(s%) and hence min V(s¥] = min V(s?).
| e delsjsL ¢ dsjsL 9

L . . .
Therefore Q(s§.1] Vcsdall '.Téggchsj

=V-*!\ - i *
(s3] = z4 dgngV(sj

= QCS&) - Zd‘.

If z4 > 0, there are two possibilities. If zy4 2 Q(s}),

then V(s} ;) = V(sj) - z4 3 dm;nLV(s;), and so

V(sa_l) = min V(s*) and Q(s 1) = 0. But for
d-15j5L

z24 <Q[sa), V(53“1) > dT%BLV(si), hence

min V(s¥*) = min V(s*) and Q(s%_1) = Q(s*) - zj.
d-15jsL 77 dsjsL d-1 IS

Combining these observations and noting that
Q(s*) = V(s*) - min V(s%*) =
L R RIS

we have the following result:

THEOREM 1: For a set of final branch metrics Z9s %3, ', Zp, the
values Q(s;) along the final path are determined as follows:
()l Qs{) = 0;
(2) Q(sy) = max{Q(sy) - z4, 0}, 1sdsL.

Let us restrict censideration new to cases in which the branch
metrics can take on enly ene pesitive value; that is, ry > 0 and

Ty $0,2s% j & M. Under this assumption, by virtue ef Theorem 1, we

25

can quite easily construct a graph of Q(s}) by the follewing steps:

(1)} Draw a horizontal line eof length L units, each unit
to represent a branch in the final path. The right
end of the line represents node sf and the left end
represents sg. Each dividing mark along the line
represents one node.

(2) For each branch for which zq < 0, label the branch
with the value zj.

(3) At the node preceeding the rightmost labelled branch,
erect a vertical line whose height is the absolute
value of the label, From the top of this line to
the base line, draw a line whose slope is equal to
the single positive branch value. This line inter-
sects the base line at some point to the left of
the vertical line.

(4) Working from right to left, at the node preceeding
each labelled branch, erect a vertical line of
appropriate height and draw a slanting line back
to the base line. If at any of the labelled
branches, slanting lines from nodes to the right
extend back past the branch, the vertical line
should be measured off from the highest such
slanting line, and not from the base line.

(5) The upper boundary of the figure formed when step
(4) has been performed for all labelled branches
is a plot of Q(sa) versus d.

As an example, consider operating on the binary symmetric channel

with N = 2, L = 20. Branch metrics have the form
z= (2~e) Mg + e Mg

where e is the number of discrepancies between the code symbols on the
branch and the corresponding received symbols, and My and My are
constants. Suppose Mg = 1 and ME = -8, and suppose the error pattern
is 00 00 00 Q0 00 0Q 00 01 QO 00 00 Q0 00 11 00 10 Q0 Q0 01 00, Thus
there is a double error in branch 14 and single errors in branches 8,

16, and 19. The graph of Q(sa) from steps (1)-(5) is shown in Figure 10.

26

2Q
Q(s3)

45 ¢

10 L 3

5 L

0 A R A e i 2 1{ -y gy

-7 -16 o7 7
d
FIGURE 10. Graph of Q(sj) for the Example.
A
/ B
V4 G Ve

FIGURE 11. Figure Shewing Effect of Error Clustering on Computation.

27

Since the number of final-path computations performed at sj is
related linearly (neglecting the effects of quantization) te Q(Sé)a it
is evident that the total number of final-path computations is related
linearly to the area of the figure produced in the construction.
Moreover, the graph places in evidence the source of various computations,
if we partition the figure as shown in Figure 11, by drawing a hori-
zontal line from the bottom of each vertical line. The areas of
triangles in the figure represent computations due to the presence
of errors, regardless of other errors; if errors were separated by
enough error-free branches, only triangles would appear in the graph.
The extra computation required by proximity éf errors is represented
by parallelograms. For example, in Figure 11 the area of triangle A
represents computations due to the double error in branch 14, The
area of parallelogram B represents computations due to the nearness
of the double error to the single error in branch 16. The area of
parallelogram C represents computations due to the proximity of these
two errors to the error in branch 19.

It is possible to repeal the restriction to metrics which assume
only one positive value, but the price is a considerable loss of
simplicity. Instead of drawing a line of fixed slope from the top of
the vertical lines to the base line, it is necessary to draw a line
whose slope over each branch is equal to the (positive) branch value.
If the construction is carried out with this modification, a plot of
Q(sj) results, and the analogous parts of the partitioned figure admit
the same interpretation as above.

2.A.2.b. A statistical model for Q(sd). Suppose we fix some

node sj on the final path and investigate the random variable Q(sj).

We allow the frame length L to grow without bound, so that s} is

28
arhitrarily far from the end ¢f the tree, and hence the probability
density funetions of Q(S&] and Q(s5+1) are identical. We dencote this
common density function PQ(-) and attempt to evaluate it;

We are assuming that the branch values lie in the set‘{rl, T,
*=+, Ty}; it will simplify the analysis if we consider separately
the positive and negative values. Let'{nl, n,, ‘v, nK} be the
positive values and‘{ml, my, "°°, my} be the absolute values of the
negative values, so that {ry,***,ry} ='{nK, set, Mg, AWMy, e, -myl.
Furthermore, let the ny and my be indexed such that Ny<ny<e--<ny and
my<mp<:--<my. Finally, let p; = Pr{z = -ng} and q = Priz = n }.

J

Thus } Pj +

K
L ax = 1.
j:]_ k=

1

For Q(sa+1) 2 Ny, Q(sa) Q(s§+1) - Zg.1- Therefore, for u 2 ny,

Pr{Q(s*) = u}

- J
jzlpr{Q(sa+1) = u-mj}pj

K
+) Pr{Q(s%,,) = wn, }a,
k=1

Using the fact that Q(sz) and Q(s§+1) are identically distributed, we
obtain, for u = ng,

K

J
P (u) = P, (u-m.)p. + P (u+n,)q (2)
-ZQJJkZIQ k7K

Q 521
Equation (2) suggests a representation in the form of a Markov
chain whose typical states are as shown in Figure 12,
For u < nK the analysis is complicated, but in a fashion similar
to the argument preceeding Theorem 1, it can be seen that the distri-

bution PQ(u) in this range satisfies the equations arising from states

29

FIGURE 12. A Typical State in the Markov Chain Model for Q(SS)'

FIGURE 13. Markov Chain Model for Q(sé) for the Example,

30
identical to the one in Figure 12, except that any transition u -+ u-ny
which would "“aevershoot' the state u=0 is reuted instead into the zere
state. An example of such a chain with K=2, J=1, niel, n2a2, and m,=2
is shown in Figure 13,

The equilibrium distribution {my, m;, ****} of the chain so
constructed is the density function of Q(sé); i.e., my = PQ(O),
T = PQ(1), etc. Hence if the {m,} can be found for this kind of

chain, PQ(u] is .determined. A partial solution is furnished by the

following theorem:

J K
THEOREM 2: Let D = .2 mp; = } nyag- (3)
j=1 k=1
K n~1
Then [Ay E (my-u)m, = ~D, 4)
k=1 = u=0

Proof: Let d+(u) be the upward drift from state u and d (u) the

downward drift. Then

d* (u) m

.P-
1 J+]

§
I o~10a

J
K

Y min{u, nylq; .
Kot k- k

and 4™ (u)

If {m,} is the equilibrium distribution of the chain, then the average

values o u) an “(u) with respect to {m_} must be equal. at is,
1 f a*(u) and d”(u) with resp {m} be equal. Th

z d+ (u)-n-u = z d— (u)"ru * (5)
u=0 u=0
Now
@ = Kk
L@@, = I) wminfu, nglggmy
u=0 u=0 k=1 |

K

} qp I min{u, nglm,
k=1 u=0

31

Pa@my = JTa(Jum, +] nm) (6)
u=0 k=1 u=0 u=ny
K Ml
Adding) q) nym, and its negative to (6) yields:
k=1 u=0

Lo o b i
d (W, = ax (u-m)m, + qyn
u=0 Y kel we0 U g K
Therefore from (5),
K o o i3 i
qx) (u-mm, = m.p.m. - qyn, = D
k=1 u=0 Um0 ge1 T g2 KK

Changing the sign of both sides yields (4), proving the theorem.

In general, Theorem 2 expresses a linear relation which the
equilibrium probabilities of the atypical states must satisfy. In

the special case in which K = 1 and ny = 1, Theorem 2 simplifies to:

COROLLARY: For chains with a single downward transition of unit

magnitude,
To = = (7)

That is, if there is only one atypical state, my can be found
immediately from (7). Then the remaining T, can be found successively
by solving the recurrence equations. Therefore, when there is a
single positive metric value and the values can be normalized so that
the positive metric has unit value, then the density PQ(u) can be
found exactly for all u. ’

The Markov chain model for Q(sz) was originally proposed by

Massey{14], who also proved the above corollary directly. Theorem 2

32
arose out of attempts to generalize Massey's technique to apply to
chains with more than one atypical state. Such attemrts are, however,
doomed to failure. For chains of this type with K > 1 atypical nodes,
it is impossible to find K independent equations by means of these
drift-balancing techniques. To see this, note that the equations
derived are always linear equatiens in wg, wy, **°, mg_j whose
coefficients are integer multiples of P4 and q,. Now suppese all the
Pj and qy are rational. If there were a set of K independent linear
drift equations, then the selutions would again be rational. But there
exist chains with rational P; and q, and irrational LA For example,
the chain of Figure 14 has m, = (1-8)8%, 0 s u < », where B = -} + /7/1Z.

Although it is not always pcssible to get an exact solution for
{m,} using the drift-balancing method, one can always solve for {m,}
numerically by solving a difference equation of the form (2}. The
solution has the general form:
my+ng
o= L CiB} (8)
i=1
where the eigenvalues B; are the roots of the equation obtained by
substituting m, = Bu inte (2), that is,
K J
I 8k - Y -] p8N = 0 (9)
k=1 j=1
By Descartes' Pule of Signs, there are either two positive real roots
of (9) or none. Since by inspection g = 1 is a root, say 81 = 1, there
must be exactly one other positive real rot, say 8,. Now since Z“u =i,
g1 cannot be active; that is, C; = 0. The eother pesitive real root,
B2, is active, however, and is the dominant eigenvalue. As u + o,

Ty > ng. Thus we always have PQ(u) + Ke ™Y for some X and r, a fact

FIGURE 14.

A Markov Chain with Rational Transition Probabilities and
an Irrational Eigenvalue.

33

34

alluded to in Chapter I. (This fact does not depend on the choice
of integer-valued metrics, however. See Gallager ([9], pp. 312 ff.)
for a proof based on random-walk arguments that is valid for any metric
of the form (I-1).)

A class of chains in which it is particularly simple to find the
exact solution for the equilibrium probabilities Tos Mys To,
once the dominant eigenvalue has been obtained, are those with only
one upward transition of unit magnitude, J = 1, my = 1. The chain of
Figure 14 is an example of such a chain, and like the chain of Figure

14, all such chains have a single active eigenvalue: m_ = KBY for all u.

u
(Since Zwu =1, K = 1-8.) To prove this*, we show that "k+1/1rk is
independent of k. Suppose we have a long sequence of numbers which
represent the trajectory of a particle behaving as specified by the
chain of Figure 15a. Let N be the length of the sequence, and let Ny

‘be the number of occurrences of k in the sequence. Then as N + o, |
Ng/N + wy. Now for every adjacent pair (n,0) in the sequence
representing a move from state n to state 0 which is an "overshoot"
move, that is, one which would have been longer than n steps is there
had been room, let us place a symbol E between the n and the 0. This
increases N but does not affect any N, . The new sequence is a sample
trajectory from the chain of Figure 15b. Now consider adding after
each E in the new sequence j more Es, where j = 0 with probability p,
j = 1 with probability p(1-p), ***, j = i with probability p(1-p)l.
Again N has been increased, but no Ny has been changed, and the new
sequence is a sample trajectory from the chain of Figure 15c. Now the

chain of Figure 15c is exactly the same chain as that of Figure 15a,

™ 8 Y

* This simple proof was suggested by Massey[lsl.

35

(a)

"mormal' 10
p transitions D

Ao

ouliliias o
WIS =
’ ‘nmormal'™ 2-0
e transitions
‘\\\\\\

"overshoot'" 2-0
"overshoot" 1-0 transitions
transitions

(b)

. (©)

FIGURE 15. Steps in the Proof of the Single Active Eigenvalue Property.

36

with state E in the former corresponding to state 0 in the latter, and
state k in the former corresponding to state k+1 in the latter, k 2 0.
Let Ngx denote the length of the sequence we have constructed by adding

Es. Looking at the chain of Figure 15a, we have

Tk+l _ Ny, 1/N - Nyt

Tk Nk/N "Nk

But from the chain of Figure 15c, we conclude

Tk+2 | MNy1/Nex - Nk+1
Tk+1 Nk/NeX Nk

Therefore “k+1/“k = ﬂk+2/nk+1 and hence Ty T (l—B)Bu for all u 2 0.

2. B. THE ZIGANGIROV-JELINEK ALGORITHM
Despite its relative ease of implementation, the Fano algorithm
is cbnceptually a complicated scheme. Recently, in independent work,

(6]

Zigangirov and Jelinek[7] have suggested a sequential decoding
algorithm which is quite simple, and which exhibits more clearly the
essential nature of sequential decoding. In addition, when the
algorithm is suitably modified, its performance is in many cases
superior to that of the Fano algorithm, provided that sufficient
memory is available for use by the decoder. In this section we describe
the Zigangirov-Jelinek decoder and compare some of its properties to
those given previously for the Fano algorithm.

The decoder consists of an ordered list of nodes, called a stack,
in which the nodes are listed in decreasing order of likelihood values.

Thus the '"top'" node is (one of) the node(s) of greatest value among

the nodes on the stack. The stack is initially loaded with the origin

node, whose value is taken to be zero, and is processed according to
the following rules:

(1) Compute the values of the successors of the top
node and add them to the stack in the places
determined by their values.

(2) Delete the node whose successors were just added.

(3) If the new top node is in the last level of the
tree, stop. Otherwise, go to (1).

When the algorithm halts, the node at the top of the stack
determines the path selected. Taking a computation to be an execution
of step (1), the number of computations required to decode a tree is
one less than the size of the stack when the decoder halts.

We state two conditions which are satisfied by at least one
path through the tree, and then undertake to prove that the Zigangirov-
Jelinek decoder selects one of these paths. For a path Sq> Sd+1s s
s, 0 £ d 2L, define the minimum value of the path to be dT%BLV(s.).
The conditions are: ==

ZJ1: s§ is the origin node.

ZJ2: For 0 £'i < L, the branch leading from s* to s§+1

is the first branch of one of the paths
from s¥ to the end of the tree having greatest
minimum value.

Conditions ZJ1 and ZJ2 do not specify a unique path through the
tree as do F1 and F2, because the action in case of ties in ZJ2 is not
specified. It will be seen that the problem of resolving ties among
path minima with the Zigangirov-Jelinek decoder is quite complicated,

depending not only on how ties are resolved in the stack, but upon the

values of certain nodes along the paths concerned as well. We will be

37

38
content to show that the Zigangirov-Jelinek decoder selects one of
the paths satisfying ZJ1 and ZJ2.
Let sq, 0 £ d £ L, be a node in the tree, and suppose there is a

path Sds Sg+1» s Sy, from sy to the end of the tree such that

A
e

A

[

V(sq) = V(s;), d

Then Sd is called a breakout node*. If

HA
o

V(sq) < V(s;), d < j (10)

then we will call sq @ strict breakout node.

LEMMA: If sy is a strict breakout node and s; reaches the top of the
stack, then sy is on the final path (i.e., the path selected by
the decoder).

Proof: Let s' be the second node on the stack when sq Treaches the

top of the stack. Then
V(s') = V(sq) (1D

Let sq, Sg+1s *°°» S|, be a path from sy to the end of the tree for
which (10) holds. Now after sgq is extended, sj,; is on the stack, and
by (10) and (11), sq,1 is above s', and hence sy, is extended before

s' is. Thus sy,p appears on the stack, and as before, sy, is above s',
and so on out to sj. Thus some successor of s; at the end of the tree
appears at the top of the stack, which means that s is on the final

path, as claimed.

THEOREM 3: The path selected by the Zigangirov-Jelinek decoder is a

path satisfying ZJ1 and ZJ2.

[91]

* This terminology is due to Gallager'”-.

39

Proof: Note first that the minimum value along a path from s; to

the end of the tree is the value of the first strict breakout node
among S;, Sj41s s SL (sL is a strict breakout node, so there is at
least one).

Let s, sy, *°°, sf be a path satisfying ZJ1 and ZJ2. Suppose
s§1 is the first strict breakout node along the path. In Figure 16 let
the other paths represent any paths emanating from the nodes shown, and
let the nodes s(J) be the first strict breakout nodes along those paths.

Since the path s¥%, s;,---, s¥* satisfies 2J2,

0 L

V(s’él) 2v(s()y, 0335 s By-1 (12)

Since SE1 is the first strict breakout node,

nA

V() ZV(sp), 053 5B

Suppose first that (12) holds with strict inequality for all j.
Now s{J) cannot appear on the stack until s; has been extended, and
thus until s§+1 has appeared on the stack. Since
‘V(s§+1) 2 V(sEl) > V(s(i)y, s¥,1 will reach the top of the stack before
s(J) does. (It may reach the top of the stack before s(3) even appears
on the stack.) Hence s§+2 will appear on the stack before s(3) reaches
the top of the stack, and so will be above s(j), and so on. Thus SEI
will appear on the stack before s(3) reaches the top, and by (12), sgl
will reach the top of the stack before s(3) does. Now j is arbitrary,
and one of the s(J) or s§1 must eventually reach the top of the stack,
s0 it must be sEl. Hence by the Lemma, 55, si, ceey, sgl is the initial
segment of the selected path.

In the event that for some j, V(sﬁl) = V(s(j)), then a path from

40

- =8 < (0)

—
s*
S*
2 -
~ — S(Bl 1)
N -
Y
S*
By-1
*
S
By

FIGURE 16, The Initial Segment of the Selected Path and Some
Branching Paths.

—0 s(Bjy1-1)

FIGURE 17, An Intermediate Segment of the Selected Path and Seme
Branching Paths.

41
sa to the end of the tree passing through s(3) also satisfies ZJ1 and
ZJ2. The same argument as above shows that the decoder will select
one of the two paths; i.e., either s(3) or sgl will reach the top of
the stack first, but which one depends on how ties are resolved in the

% and s(j) and the nodes

stack, and on the values of the nodes between s3

between s¥ and sﬁl.

Now consider Figure 17, which is similar to Figure 16 except that
the origin node is replaced by the ith strict breakout node, sﬁi, and
S§i+1 is the (i+1l)st strict breakout node. If sﬁi reaches the top of
the stack, the Lemma guarantees that sﬁi is on the final path, so any
processing of nodes which are below sﬁi when the latter reaches the top
of the stack cannot affect the final choice of path. Thus we may
consider the processing of these nodes as independent of the processing
of the nodes shown in Figure 17. Then the same argument as above applies
to show that sf;,; reaches the top of the stack before any s(J), barring
ties.

Combining the arguments shows that the successive strict breakout
nodes along some path satisfying ZJ1 and ZJ2 are nodes on the final
path; Since the terminal node sf is a strict breakout node, this shows

that the path selected is one which satisfies the conditions, and the

theorem is proved.

Now let s§, sy, *-*, sf be the path selected by the Zigangirov-

Jelinek decoder. If sf is the first strict breakout node among the

nodes sﬁ, s§+1, *tr, st then V(s§) = m%n V(sg). Now consider
d<jsL
Figure 18, where 53, Sq+12 72 Sqek is any other path emanating from

sy. Suppose V(sd+j) > V(sp), 1 £ j < k, and V(sgsk) < V(s§). Then

FIGURE 18.

Sd+2 J——— Sd'i'k
Sd+
*
Sd+1 ~
=~ S
S*
B

A Segment of the Selected Path and a Branching Path.

42

43
since sg is on the final path, it eventually reaches the top of the
stack, but since each Sd+j» 1 £ j < k, has value greater than V(sf), all
of these nodes reach the top of the stack before SE. Since

V(sg+k) < V(sﬁ), sg reaches the top of the stack before sy, and since

*

Sp

is a strict breakout node, sj.x never reaches the top of the stack--

*

i on the stack such that

there will always be a node s
V(s;) > V(sg) > V(sq4k)- This proves the following theorem concerning

the extending of nodes not on the final path:

THEOREM 4: With the notation of Figure 18,

(1) sg+k reaches the top of the stack if

A

k;

V(5d+j) > dfigLV(s;), 15

(2) sg+k does not reach the top of the stack if for any
such j,
V(sg,:) < min V(s¥)
T agisn t
The possibility not covered in the theorem, namely V(5d+j) S min V(s¥),
dsigLl
1 £ 3 £k, with equality for some such j, depends, as before, on the
resolving of ties in the stack and on intermediate node values.
The Zigangirov-Jelinek algorithm, while of theoretical interest,
is impractical because of the time required to keep the stack ordered
exactly. Jelinek[7] has proposed a quantized version of the algorithm
in which nodes are placed in bins according to their values. That is,
for some H > 0, a node s is placed in bin k if kH 5 V(s) < (k+1)H.
The use of bins rather than an ordered stack obviates the need to search
the stack when nodes are to be added. The steps in the modified

algorithm are as follows:

44
(1) Select any node from the highest non-vacant bin,
compute the values of its successors, and place
them in the proper bins.

(2) Delete the node whose successors were just added.

(3) If any node in the highest non-vacant bin is in the
last level of the tree, stop. Otherwise, go to (1).

Extensive computer simulation studies, reported in the next

chapter,

indicate tnat the Jelinek algorithm is in most cases of

interest superior to the Fano algorithm, provided that large storage

capability is provided the decoder.

We state without proof the following theorems, analogous to

Theorems 3 and 4, and proved similarly.

THEOREM 5:

THEOREM 6:

The path s§, s{, T, s{ selected by the Jelinek decoder
satisfies the following two conditions:
J1: s§ is the origin node.
J2: For 0 =i £ L-1, the branch leading from s} to
s¥,1 1s the first branch of one of the paths
from sg to the end of the tree whose lowest-
value node belongs in the highest bin.
Let sq.+k be a node in level d+k of the tree, not on the
selected path, and let sg be the deepest node shared by the

selected path and the path to sg;x. Let s be a node such

¥) = i *
that'V(le d?;gLV(sj). Then S q+k reaches the top of the

stack if every node sg,;, 1 £ i £ k, belongs in a higher
bin than s}l; sg+k does not reach the top of the stack if

for any such i, sgq,; belongs in a lower bin than S;l

It is evident that J2 is simply a quantized version of ZJ2. Moreover,

the quantization of node values into bins of width H corresponds to the

45
quantization by thresholds (1) with the Fano algorithm; F2 and J2
show that, except for the effect of ties, the Fano and Jelinek decoders
choose the same path through the tree. In addition, the set of nodes
examined by the two decoders is the same, again excepting the effect
of ties. As H and A are increased, of course, the effect of ties

becomes more pronounced.

2. C. A NEW UNQUANTIZED FANO ALGORITHM

In the previous section we described the ZigangiroveJelinek
algorithm and a modification, the Jelinek algorithm, based on quantizing
node values. We saw that, except for the effect of quantization,
the two algorithms have identical search patterns. In addition, it was
noted that the bin width H in the Jelinek algorithm plays the same
role as the threshold increment A in the Fano algorithm, and that,
excluding the effect of ties among quantized node values, the set of
nodes examined, and in particular the final paths for these two
algorithms coincide.

In view of this it is natural to wonder if there is some algorithm
which, like the Zigangirov-Jelinek algorithm, is unquantized, but which,
like the Fano algorithm, substitutes a back-and-forth search capability
for the requirement of node storage. In this section we give a
modification of the Fano algorithm which fills this vacant place
among the algorithms.

Before describing the algorithm, we shall make some more remarks
about the metric trees which these algorithms are meant to search.
Consider drawing contours in the tree, as shown in Figure 19. These

contours have an analogous interpretation to that of contours on a

46

FIGURE 19. A Metric Tree Showing Contours Drawn for Values 0, -4,
-8, and -12.

47
topographical map; namely, each node in the region enclosed by a con-
tour has value no less than the value assigned to the contour. It is
clear that among the branches crossed by the contour, exactly one is
directed into the region enclosed, and all others are directed out of
it. This applies to contours enclosing the origin node as well as
all others, since we are adding to the tree a branch of infinite metric
leading into the origin node, as discussed on page 19. Now suppose
that the contours are drawn at intervals of A. A little thought about
the Fano algorithm will lead to the following conclusions:

(1) The decoder can move across a contour into é region
unimpeded, but once in the region, it cannot move
out of it in any direction until the threshold is

lowered.

(2) The threshold is tightened the first time the
decoder crosses the contour headed into the region.

(3) Before decreasing the threshold and leaving a
region, the decoder will visit every node in the
region.

(4) The threshold is lowered only at the node at the
end of the branch which leads into the region, i.e.,
the first node in the region that the decoder
visited.

(5) After the decoder has departed from the region
enclosed by a contour, that contour has no effect
on subsequent searches.

Two annoying possibilities for metric tree configurations are
shown in Figure 20. In Figure 20a, there are no nodes in the region
between contours T and T-A. Hence after the decoder searches the
region enclosed by contour T, it lowers the threshold to T-A and

proceeds to search exactly the same set of nodes again, so that

nothing is gained by lowering the threshold to T-A. In Figure 20b,

48

(a)

=

FIGURE 20. Two Undesirable Metric Tree Configurations.

49
on the other hand, a great many nodes, and even new enclosed regions,
lie between T and T-A, so that lowering the threshold from T to T-A
makes many new moves possible. When A is chosen small, situations
like Figure 20a are common, while for large A, the configurations of
Figure 20b occur quite often.

The new algorithm is based on the principle of avoiding these
unpleasant extremes; that is, in lowering the threshold we wish to
avoid (1) lowering it so little that no new moves are possible, and
(2) lowering it so much that a plethora of new moves is presented.

Our approach will again amount to searching in contours in accordance
with (1)-(5) above, but the contours will be drawn, not in intervals
of A, but to correspond to the exact values of the nodes. That is,
if Ty and T, are adjacent contours, witthl < Tp, then in the region
between Ty and T, are nodes of value T; and only such nodes. For
example, the tree of Figure 19 is redrawn in Figure 21, this time. with
contours corresponding to the exact node values instead of in in-
crements of 4. It is clear that the situation in Figure 20a cannot
occur when the contours are so drawn, and that the situation in
Figure 20b can occur only if there are many nodes of the same value
just outside a contour.

To search the tree, each time a proposed forward move is blocked
(that is, the move would lead out of a contour which has not been
fully searched), the decoder notes the value of the inaccessible node
and saves the largest such value, K. When the region within the con-
tour has been completely searched and the decoder returns to the first
node in the region, the threshold must be lowered. The Fano decoder

would lower by A and undertake to move forward again, without guarantee

of success. The unquantized decoder knows that lowering to K will
assure the possibility of a new move forward; but before doing so, it
considers the possibility of a backward move. If the value of the
predecessor of the present node is greater than K, the threshold is
lowered to that value. Recognizing that forward searching with this
threshold is fruitless, the decoder immediately moves backward. If,
on the other hand, K equals or exceed the value of the predecessor,
the threshold is lowered to K and forward searching resumes. In either
" case, the threshold is lowered just enough to escape from the present
contour.

A flowchart of the unquantized Fano algorithm is given in
Figure 22. The only differences between this and the original Fano
algorithm (Figure 8) are the maintenance of the forward blocking
value K, the routine for lowering the threshold, and the absence of
the threshold incerment A. In the new algorithm, the tightening of
T is done exactly; that is, T is set equal to the node value after
the first move to a node.

We now study the action of this algorithm in more detail. Fol-

lowing Massey and Sain[ls]

, we first investigate the search properties
of the algorithm when applied to "trunks,' or degenerate trees in
which each node (except the last) has a single successor. In this
case, the flowchart can be simplified to that of Figure 23.

Consider the trunk of Figure 24. Each Vj is the value at the

corresponding node Sy» and Vg is taken to be zero. For a fixed j,

0 £j £ L, define U(j) = min V; , j £ k £ L. Then we have
ko jsizk

HA

k+1 7

&) () G) y@G), -y
such that Uki Ukinl' Then Uk1 s Uk2 . s Ukm are all the

k £ L. Let kqs kz, ceey, km be the values of k

A

51

no

o O

\'f
T
K

wonon

- 0O

——— |

52

LOOK FORWARD
ON BEST BRANCH

LOOK FORWARD ON
NEXT BEST BRANCH

MOVE
FORWARD
V+bF >V

VISIT ?

no

_ =
¥
—

- 00

FIGURE 22. Unquantized Fano Sequential Decoding Algorithm.

7

no

max{X, V+bF} »> K

P

LOOK
BACK

yes

es

M@QVE
BACK

V—bB >V

IS THERE
A NEXT BEST
BRANCH 7

=<
Houon
oo

- 00

|

LOOK FORWARD

MOVE
FORWARD

V+bF >V

FIRST
VISIT ?

V+bF + K
I

53

LOOK
BACK

N

FIGURE 23. Unquantized Fano Trunk Search Algorithm.

MOVE
BACK

V"bB hd V

FIGURE 24.

54

A Metric Trunk.

FIGURE 25. Determination of k; for a Typical Metric Trunk.
() (3) (3)
o Vi_g \£ Uy Yin-1 Y
$ S 4k bt Sy
FIGURE 26,

A Trunk Equivalent to That of Figure 24 Between Sj-l and S5

55
Gl
k
Uéi) = Vkm. As a clarifying example, see Figure 25.

distinct values assumed by U ~“, and moreover, UﬁJ)
) ' Ky

LEMMA 1: With respect to the action of the decoder between nodes
$35-1 and S§» the trunk of Figure 26 is equivalent to that

of Figure 24.

Note: We will refer to the trunk of Figure 24 as P, and to the
trunk of Figure 26 as P'. The nodes of P' are labelled with the
subscripts of the nodes in P which have the same value, so that

subscripts in P' do not indicate the depth of the node.

Proof of Lemma 1: First consider the case when Vj < Vj_1. Let

-3 G) .
the threshold is tightened; that is, T = Vj-l- In searching P, a

forward look (F look) is made, K is set to Vj,,and back looks and

Upon first moving to Sjel in P and to 53_1 in P',

moves (B looks and B moves) are made until either the origin is
reached or a node of value less than or equal to K is seen, at which

time T is set to K = Vj and F searching proceeds, including an F look

and an F move from sj_lto s Up to this point, two F looks, one

J‘.
with T = Vj-l and one with T = Vj, and one F move with T = Vj have
been made from Sj-1 to Sj- By inspection, this agrees with the action
of the decoder in searching P' up to the first move to sj.

Now suppose the action of the decoder on P up to the first move
to sk; agrees with that on P' up to the first move to Sk;- In P, all
nodes between s, and sy (exclusive) have values no less than Vy.,

i i+l 1
and F moves are preferred in case of ties, so the decoder moves to the
node preceeding sk,+1 without a return to ski. At that time, K is set

’ i

to Vki+1 and B searching begins and continues past S; toward s, until

56
the origin is reached or a node of value not exceeding K is seen, when
T is decreased to K and F searching resumes, culminating in a move to
SKi+1- The decoder action between $5-1 and sj between the first move
to sk, and the first move to Sky41 is a B look and a B move from s

J

j with

By inspection, this is the same action as in P' for the

to sj.1 with T = Vi; and an F look and an F move from $j-1 to s
T = V.
corresponding span of moves. By induction, the lemma is proved for
the case V5 < Vj_1.

For V; > Vj_1, note that we may have Uéi) 2 Vj-l for the first
few i. Let i* be the least index i such that Uﬁgz < Vj.1. We first
show that P and P' are equivalent between the (j-1)st and jth nodes

up to the first move to Sk Starting at $3-1 with T =V an F

j-1s
look and an F move are made to 55, and T is set to Vj. Searching to
skl_l proceeds without return to sj, but at squl, K is set to Vkq

and the decoder searches back to S5 and looks back to Sj5-1 with T = Vj.
Since K 2 Vj—l’ T is lowered to K and F searching begins. Tﬁis is
repeated at each Skj-1 Up to the node preceeding Skyx- At that point,
K is set to Vi * and B searching to S is performed as before. This
time, however, K < Vj-1, so T is lowered to Vj—l’ a B move to $5-1 is
made, and B searching continues until T is lowered to K. Then F

searching resumes and the decoder moves to Sk * for the first time.

The total contribution to searching between $j-1 and S5 is:

1]
<

an F look from S5-1 to S5 with T j-15

an F move from 3.1 to 53 with T = Vj-13

v

i* B looks f . tos, , with T=V,, V, , **-, ;
1 OOKS rom SJ (o] S]-l 1 j kl ki*_l

a B move from S5 to s; g with T = Vj—l;

an F look from sj_3 to sj with T = Vk.,;

an F move from $j-1 to S5 with T Vki*'

57
Again by inspection, this is exactly the action of the decoder on P!
for the same period. The induction step is exactly as before, proving
the lemma for this case.
It~remains to consider the case Vj = qul. Letting ky = j, in
j with

Then by induction

both P and P' there is one F look and one F move from Sj.1 to s
T=Vj1= Vj up until the first move to Skg = Sj-
as before, the lemma follows for this final case.

From the proof of Lemma 1, we can count the number of operations

performed:

LEMMA 2: Using the notation developed above, the numbers of F looks

and F moves from Sj-1 to S and B looks and B moves from

s: to 53-1 is as follows:

J
Vi<Viie Y57 V5 Yyt Vg
e
F looks m+2 m+2-i* m+1
F moves m+1 m+2-i* m+1
B looks m m m
B moves m m+l-i* m

By invoking Lemma 1 and considering the action of the decoder on

trunks of the form of Figure 26, we conclude:

LEMMA 3: If an F move is made from node S5 with threshold T, then the
next B move to sj'(if there is one) is also made with

threshold T.

Lemma 3, which Massey and sainl13] cal1 the M'superposition

property," is significant in that it allows us to extend the analysis

to tree searches. Note that a consequence of Lemma 3 is that the
threshold is always lowered to a value T at the last point at which
it was raised to the value T.

Consider the diverging paths of Figure 27. By Lemma 1, to study
the action of the decoder at node Sj We may rgplace both the primed
and unprimed paths by appropriate paths of decreasing node value.

Let kl’ k2, Ty, km be the depths at which U£j+1) assumes its values
along the unprimed path, and L5 %5, "', &, the depths for the
primed path. Then we may replace Figure 27 by Figure 28.

If the decoder reaches Skm in Figure 28, then it will reach S,

in Figure 27, and if it reaches st

n

s{ in Figure 27. Thus to determine which path is chosen, given that

in Figure 28, then it will reach

the choice is between these two, we must see which of the nodes skm or
Sin is reached first.

Suppose the branch from Sj to sjs1 1is "better'" than the branch
from s to sj+1; that is, either Vj+1 > V5+1 or Vj+1 = Vj+1 and tﬁe
decoder somehow resolves the tie in favor of sj+1. We distinguish
several cases:

If Vkm 2 Vj (which requires Vj+1 2 Vj), after the first F move
to Sj+1 the decoder never returns to S5 Hence the unprimed path is
selected, and in fact, no F look is ever made along the primed path.
In this case, the minimum along the unprimed path seen from S5 is Vj’
while along the primed path it is, of course, at most Vj.

If Vj > Vkm 2 Vin, the threshold must eventually be lowered to

Viens by Lemma 3, this lowering must take place at or before Sj- After

the threshold is so lowered, the decoder proceeds out to Skpy and hence

the unprimed path is selected. F moves are made along the primed path

58

FIGURE 27.

FIGURE 28.

Branching Metric Trunks.

VE}_ Vk2 vkm
el —— cme e el

Sky Sk, Skm
1 1
Vi, Yk, Yk,
— r'S —— e ——@
! t 1
521 %y SQ'n

Branching Metric Trunks Equivalent to Those of Figure 27.

59

60

to all nodes Sy . such that Vi. >Vy . In this case the minimum seen
i i m
along the unprimed path from S3 is V} and the minimum seen along the
' m
ime h i >,
primed path is Vzn
If V. > V! > Vk , the threshold is eventually lowered to V! at
J &n m n

or beforeAsj, and the decoder proceeds out the unprimed path with this

threshold in force. Unable to move to the end, it returns to S5 and
and proceeds out the primed path (with the same threshold, by Lemma 3),
to the end. Therefore, the primed path is chosen, and F moves are
made to all nodes Sk; OB the unp£imed path such that Vki 2 Vin. The

minimum seen along the unprimed path is Vkm and along the primed path

is V!

fn’
If Vin 2 Vj > Vkm, then after the first move to 55+1 no return is
made to Sj- Hence the primed path is chosen. Nodes in the unprimed

path are examined if their values equal or exceed Vj' The minimum
along the primed path is Vj and along the unprimed path is Vkm'

The cases considered above are exhaustive, and we may apply the
reasoning to every branching point in the tree, so we have proved the

following theorems:

THEOREM 7: The path s*, si, ety si through the tree found by the
unquantized Fano decoder is defined by the following
conditions:

MF1: s§ is the origin node.

MF2: For 0 £ i £ L-1, the branch leading from s}
s{,1 is the first branch of that path from s}
to the end of the tree having greatest minimum
value; if two paths with different first
branches are tied, then whichever of the two
first branches is better is the branch from s;
to s¥,q-

61
THEOREM 8: Let s be any node in level d of the tree, net en the final
path; and let si be the deepest nede shared hy the final
path and the path to s3. The decoder will he positioned
at sy sometime during decoding if and enly if

V(sy) 2 min V(s*) for all k, b=k = d
k
bsjsL °

with the provision that if equality holds for any k, the

branch from s to s,; must be better than the branch from
sy to sfq-

The only difference between conditions MF2 and F2 is that the
latter is quantized. Therefore the Fano algorithm may by considered
to be a quantized version of this modified Fano algorithm. This
observation carries over to the searching of nodes off the final path
as well. 1In addition, MF2 and ZJ2 differ only in that ties are
resolved in a definite manner in MF2 while they are left arbitrary in
ZJ2. Therefore, except for the effect of ties, the modified Fano
algorithm and the Zigangirov-Jelinek algorithm select the same patﬁ.
The search patterns for non-final nodes also agree, except for
differences due to ties. Therefore this unquantized Fano algorithm
is an algorithm of the kind we sought in our remarks at the beginning
of the section.

Although it was simple to count the number of looks and moves
during a trunk search (Lemma 2), the problem is much more complex when
trees are being éearched. To count the number of F looks, say, at a
node sq on the correct path, we must find the number of distinct

values greater than min V(s*) assumed by the Uéd) along every path
dsjsL

emanating from sj. The threshold will be lowered at or before s§ once

62
for each of these values, and each such lowering will contribute some
F looks along various branches. Because of the complexity, we will
omit discussion of the problem in general, but we will consider a
special case and compare the computation of the modified algorithm to
that of the conventional Fano algorithm in this case.

Suppose the branch metrics assume values in a finite set of
integers, and furthermore that all the values are integer multiples
of the one of least absolute value; that is, the admissible metric
values are {r, nyT, Nyr, e, nNr} where r and all the nj are integers
(positive or negative). As a consequence of this choice of metrics,
every node value has the form V = kr, k an integer. Suppose we choose
A = |r|. Then the only difference between a metric treekwith contours
drawn for the Fano algorithm (i.e., in increments of A) and the same
tree with contours drawn for the modified Fano algorithm (i.e., at
exact node values) is that some contours may appear in the former
which do not appear in the latter, namely those arising in situations
as in Figure 20a. Consequently the number of F looks made by the
unquantized algorithm is no greater than the number made by the Fano
algorithm, the only differences being attributable to. one of the
following reasons:
(1) Reduction of T by A does not allow escape from
a contour (as in Figure 20a).
(2) Reduction of T by A allows a B move, but no new
F move. The Fano decoder, after reducing T, makes
all possible forward moves before attempting the
B move, while the modified decoder makes the B move
immediately.
(3) A block near the origin occurs so that T must be
lowered at the origin. The Fano decoder lowers by

A repeatedly until T is low enough, while the
unquantized decoder lowers it enough the first time.

63

Note: If r > 0 and all n; < 0, so that r is the only positive

metric, (1) cannot occur. If in addition, when T is lowered to the
back node value in the modified algorithm, control passes to LOOK
FORWARD ON BEST BRANCH rather than to MOVE BACK, the differences in
computation counts due to (2) will disappear. Thus we can make the
two algorithms almost equivalent in number of computations, being
forced to accept differences only due to (3). This applies regard-
less of what measure of computation we choose.

The superiority of the new algorithm over the conventional one
seen above does not extend to the general case. In particular, the
choice of A given is a poor one from the computational viewpoint. It
is possible to choose a larger A which usually results in many fewer
computations with a negligible degradation in error probability. See
Chapter III for further discussion.

Finally, we wish to show that the test "V = T?" before an F move
is a sufficient test for the need to tighten the threshold. Consider
the first move to Sj+1 along the trunk of Figure 24, and assume the
i Then after the first move to sj, T = Vj.

If Vj+1 Z V;, then the first move to Sj+1 follows immediately. Since

test works properly up to s

T = Vj’ the threshold will be tightened at sj+1. If Vj+1 < Vj, K is

set to Vj+1 and the decoder moves back until T is reduced to K. Then

F searching begins and the first move to Sj+1 is made with T = Vj+1‘

In this case, the test "V = T?" fails at Sj just before the move to
Sj+1> but there is no need to tighten the threshold. Therefore, if
the test works up to S5 then it works up to Sj+1 Now since the

decoder is started at the origin with T =V = 0, if V4 2 0 the test

indicates that T must be tightened, and if Vq; < 0, T is reduced to Vy

64
and the first move to Sy is made. Thus the test works for the first

move to si, and hence by induction, the test is suitable for trunk
searching. By Lemma 3, the analysis extends to tree searching, and so
Figure 29 is equivalent to Figure 22. Note that the test "V = T?" is

a limiting case (as A -+ 0) of the test "V < T+A?" in Figure 9.

65

V=20
T=20
K = -~
—
LOOK FORWARD LOOK FORWARD ON
ON BEST BRANCH NEXT BE?T BRANCH
Y P

o~

\\\\\\\no
2 T?

| max{K, V+b;} > K

1 e
LOOK
BACK
yes
V"l"bF > T no
—
MOVE no yes
FORWARD
V+bF >V V'bB 5T
K=>T
K = > I
MOVE
——(ETo) BACK
V—bB +V

no

1S THERE
A NEXT BEST e
BRANCH ? -

A

FIGURE 29. Unquantized Fano Sequential Decoding Algorithm with
Alternative Threshold-tightening Test.

CHAPTER III

EXPERIMENTAL COMPARISON OF
SEQUENTIAL DECODING ALGORITHMS

The Zigangirov-Jelinek, Jelinek, and unquantized Fano algorithms
were programmed for the UNIVAC 1107 computer at the University of
Notre Dame Computing Center. These programs were used in conjunction
with existing programs for the Fano decoder and for simulating channel
disturbances to study the performance of the various decoding systems.
In this chapter we review the results of this study.

All the results to be presented were obtained using a rate %
non-systematic convolutional code of memory 35 constructed by

Costello[16].

This code has a number of important and useful pro-
perties, one of which is large free distance, which makes it well-
suited to sequential decoding. 1In all the frames run in obtaining the
data, no decoding error was made with this code, although in several
very noisy frames, the computation became prohibitive, and decoding

was discontinued, the frames being counted as erasures. The generator

polynomials for the code (in octal form) are:

c) < 533533676737

¢?) = 733533676737

66

67

Runs were made on the binary symmetric channel at three noise
levels and on the hinary<input Gaussian noise channel with three-bit
(eight-level) output quantization (see Figure 30), Some parameters

of interest for the channels used are given in Table 1. 1In Table 1,

p is the solution of Rp = R =%, -and RComp = Ry.
TABLE 1

Channel R R .

comp /Rcomp)
BSC, p=.033 0.5593 0.89 1.354
BSC, p=.045 0.4996 1.00 0.998
BSC, p=.057 0.4504 1.10 0.729
Gaussian 0.4913 1.02 0.944

-

Branch values are computed by adding the values for the two
digits on the branch. The digit values are determined by comparing
the code symbols with the corresponding received symbol. The digit
metrics are listed in Table 2. The values correspond to the terms

logBEjELbil + B in equation (I-1), rounded to integer values.

f(r)
TABLE 2
— Binary Symmetric Channel
P Code Symbol Received Symbol
0 1
0.033 0 2 -18
1 ~-18 2
0.045 0 2 -16
1 ~16 2
0.057 0 4 -35
1 ~35 4
Gaussian Channel
Received Symbol
Code Symbol 0 1 2 350 S0 6 7
- 4 4 2 0 -8 -20 -34 -58

1 -58 -34 -20 -8 0 2 4 4

7 (g
967 " 0 955 . o 943
033 045 057
7033 7045 057
1 1 1 1
967 .955 .943
(a)
» 0
434
197 1

FIGURE 30.

(b)

Channels Used in the Simulations: (a) Binary Symmetric
Channels; (b) 3-bit Quantized Gaussian Channel.

68

69
It was assumed throughout that the all-zero sequence was trans-
mitted. This assumption entails no loss of generality, but it offers
the decoders an unfair advantage of the 0 branch is preferred in case
of ties. Therefore, all decoders were biased to cooose the 1 branch
in case of ties. Thus decoding is actually somewhat more difficult
than we would expect for a random information sequence.

Computation Time for the Zigangirov-Jelinek Algorithm As pointed

out in section II-B, the necessity for a stack search renders the
Zigangirov-Jelinek computation time unacceptable, especially since the
time increases faster than linearly with the number of computations.
Figure 31 exhibits the behavior of computing time with number of
computations. Each point on the graph represents average time and
computation count for several frames whose computation counts fall in
a specified range. The data points are labelled with the number of
frames included in the average. These data were taken on the BSC with
p = .045.

Optimum Bin Spacing and Threshold Increment Extensive work with

the Fano decoder* has indicated that the best choice for A for rate %
binary codes is a value equal to the magnitude of the branch metric for
a branch having a single discrepancy. This is in agreement with an
intuitive feeling that the decoder should be allowed to skip quickly
over single errors and undertake extensive searches only in regions of
severe noise. Single-error branches have values -16, -14, and -31 on
the three BSCs, and the decoder program requires A to be a power of 2,

so A of 16, 16, and 32, respectively, were used in the runs on the BSC.

* This work is beyond the scope of the present report, but some
results are given by Costellol16].

{seconds)

Time

70

45 P

12 1

6 <

5

4 4

31 49

70
28
2 23
34
1 See detail \
\ | 42
0 /~’\-\' — . - .
200 400 600 800 1000 1200 1400
Computatioens
160 1
~ 1407
i
o
=
3
O 120 i
wy
ot
fra——)
—t
E 100
]
S
~ 80¢
60 + ' : '
300 325 350 375 400
Computations

FIGURE 31, Variation of Computing Time with Number of Computations
for the Zigangirov-Jelinek Algorithm.

For the Gaussian channel, ''single errors' arec not well-defined, but
since digit metrics are roughly double those used on the first two
BSCs, A = 32 was used.

In an effort to determine empirically the optimum bin spacing for
the Jelinek algorithm, runs were made with H = 4,8,16, and 32 on the
BSC with p = .033 and p = .045. (The Jelinek program requires H to
be a power of 2 and to be at least as large as the Qalue of a branch
which agrees with the received sequence in both digits. See Appendix B
for details.} Table 3 gives average values of the number of compu-
tations in 100-frame samples at two noise levels. Figure 32 shows the
distribution of computation for H = 4,8, and 16 at p = .045. 1In
Figure 33 the distribution of computation is plotted for H = 8,16, and
32 on the Gaussian channel. On the basis of these results we conclude
that H = 4 is the optimum choice for the first two BSCs and H = 8 for
the third BSC and the Gaussian channel. These values were used in the

remaining runs.

TABLE 3
P H Average Computation
0.033 4 353.9
8 354.3
16 360.2
32 411.8
0.045 4 469.0
8 471.1
16 517.6
32 607.3

Distribution of Computation for the Jelinek Algorithm As we saw

previously, the computation C required to decode a digit is a random

71

Pr{C > a}

1.
.90

.80 1

00

.70 4

.60

.50 ¢

.40 ¢

.30 ¢

.20

.10 ¢
.09

.08
.07

.06

.05

.04 ;

72

1.0

FIGURE 32.

1.5 2.0 2.5 3.0 4.0 5.0

Jelinek Algorithm; Distribution of Computation for Various
Bin Spacings, Binary Symmetric Channel, p=.,045.

6.0

Pr{C > a}

1.00

.90=+
.80 1

.70

.60

.50

.40

.30

.20

.10
.09
.08

.07
.06

.05

73

1.Q 1.5 2.0 2.5 3.0 4.0 5.0

FIGURE 33. Jelinek Algorithm; Distribution of Computation for Various

Bin Spacings, Gaussian Channel.

74
variable whose distribution (asymptqtically) has the form:

Pr{C > N} = K N°°

where p is the solution of R = Rp = Eo(b)/p. In Figures 34 (BSC) and
35 (Gaussian channel) are plotted the observed distributions of the
average computation per digit, that is, the total computation done in
decoding a frame divided by the frame length. The distribution of
this random variable C differs from that of C, but as we noted in
Chapter I, the distributions have the same form over a range of N.
Since Figures 34 and 35 are plotted on log-log scale, the curves tend
in this range to straight lines whose slopes are the negatives of the
values of p given in Table 1. These asymptotes are displayed as
dashed lines in Figures 34 and 35.

Comparison of Jelinek and Fano Computing Time We will define a

computation for the Fano algorithm to be an entry of either of the
LOOK FORWARD boxes of Figure 9, and a Jelinek computation to be a
execution of setp (1) of the algorithm. Because of the need for
repeated visits by the Fano decoder, it always requires more com-
putation to decode a frame than does the Jelinek decoder, so on that
basis alone, the Jelinek decoder is superior. However, Jelinek com~
putations are inherently more complicated than Fano computations, since
with each node examined, the decoder must store enough informatioﬂfto
determine the path back to the origin and to resume searching forward
from that node, if necessary. The Fano algorithm, on the other hand,
since it only moves from a node to an adjacent node, can easily main-
tain this information as it proceeds through the tree. The question

is, therefore, whether the additional complexity of the Jelinek com-

1.00
.90

.80
.70

.60 ¢

50 p = .057

.40

.30 . }//’ \\\\\

~
- «— Slope -.729
f .20 ¢ ~
&) P = .033 ~
& e

~
~
.10
.09 ¢
: sl ~-.998
.08 ¢t ~ /ope
.07 \
\\ ,
.06 ~

.04 4 ‘\\\\\

slope -1.354 N
.05 4 »

75

N

1.0 1.5 2.0 2.5 3.0 4.0 5.0

FIGURE 34. Jelinek Algorithm; Distribution of Computation on the
Binary Symmetric Channel with Optimum Bin Spacing.

Pr{C > a}

.00
.90

.80
.70

.60

.50

.40

.30

.20

10 ¢
.09

.08
.07
.06

.05

76

— slope -.944

1.0 1.5 2.0 2.5 3.0 4.0 5.0
oL

FIGURE 35. Jelinek Algorithm; Distribution of Computation on the
Gaussian Channel with Optimum Bin Spacing.

77

nutation is offset by the smaller number of computations required for
decoding.

An added complication precludes a simple answer to this question.
The number of 'forward looks" the Fano decoder must perfofm grows
faster than linearly with the number of nodes examined; that is, the
ratio of Fano computations to Jelinek computations is not constant, but
increases as the number of Jelinek computations is increased, because
of the repeated searches by the Fano decoder. It is therefore possible
that, for relatively quiet frames the Fano decoder is superior, while
for noisier frames the Jelinek decoder is superior. This is, in fact,
the behavior which was observed in the simulations.

We choose as a measure of decoding effort the time to decode a
frame. Since the time required is roughly proportional to the number
of computations, the distribution of computing time has the same shape
as the distribution of computation. The behavior observed in the
simulation is plotted in Figures 36 (BSC) and 37 (Gaussian channel).

The reader is cautioned against attributing too much significance
to the position of the crossover point in Figures 36 and 37, since it
depends strongly on the relative complexity of the two kinds of com-
putations, and may altered by differences in available hardware or
programming technique. What can safely be concluded is that the
Jelinek decoder is at least competitive with the Fano decoder, and is
faster except on fairly quiet frames. The noisier the channel, the
less likely are quiet frames, and hence the more likely is the Jelinek
decoder to be the faster of the two.

Average Computing Time as a Function of Erasure Probability We

have seen that the random variable T, the time to decode a frame,

Pr{T > t}

1.00
.90

.80
.70

.60
.50

.40 ¢

.30 ¢+

.20 ¢

.10 4
.09 ¢

.08
.07 1
.06

.05
.04

.03 1

.02

.01

30 40 50 60 70 80 100 120 150 200 250 300 400

t (milliseconds)

FIGURE 36A. Distribution of Computing Time, Binary Symmetric Channel,
p = .033,

Pr{T > t}

1.00

.80
.70

.60 4

.50 ¢

.40 ¢

.30 ¢

.20 ;

.09 ¢}
.08 }

.07 ¢

.06 1

.05 ;

.041

= Jelinek

79

30 40

FIGURE 36B.

50

60 70

t

80 100 120 150

(milliseconds)

206

250

300

400

Distribution of Computing Time, Binary Symmetric Channel,

p:

.Q45.

1.00
& Jelinek

.90
.80

.70

.60

.50

.40

.30

Pr{T > t}

.10

80

30 40 50 60 70 80 100 120 150 200 250 300

t (milliseconds)

FIGURE 36C. Distribution of Computing Time, Binary Symmetric Channel,
p = .057.

Pr{T > t}

1.
.90

.80

00

.70

.60

.50

.40

.30

.20 1

.10 1
.09

.08
.07
.06 t

.05

81

4
-~ Jelinek
40 SO 60 70 80 100 120 150 200 250 300 400 500 600
t (milliseconds)
FIGURE 37. Distribution of Computing Time, Gaussian Channel.

82

exhibits a Pareto distribution for sufficiently large values of the
distribution parameter. In any real, on-line communication system,
only a finite amount of time can be allowed for decoding each frame,
and any frame not completely decoded in the allotted time must be con-
sidered an erasure. If t;.y is the maximum allowable time per frame,
then Pr{T > tp,x} is the erasure probability. Conversely, if a
tolerable erasure probability Qg is prescribed, then the maximum time
tmax Which should be designed into the system can be found by solving.
Pr{T > tpax} = QE.

With the maximum time fixed, we have a new random variable T*
derived from T as follows: if T = t, then T* = min{t,tpax}. The
average of T* provides a convenient measure of the performance of the
system, and we now investigate the behavior of T* as a function of Q-

Suppose we have

£(t), t I tp
Pr{T > t} =

where all that is known about £{-) is that it is monotone non-increasing,
that £(t) = 1 for all t £ tg, and that f(tp) = K tp'p. (See Figure 38.)
Assume that Qg is chosen small enough that the solution of

PriT > t} = Qg, tmax, is greater than tp. Then Qg = K(tpax)™®, or

tmax = (QE/K)-I/D 1)

For a given Qg the distribution of T* is given by:

Pr{T > t}, t < tnax

Pr{T* > t} =

The density function of T is pp(t) = -H%Pf{T > t}, or

- 'qf“(t): t < tP
pp(t) = dt
Kptﬂp‘l, t = tp

Let pp(t) be given by:

pr(t), t < tpax
pp(t) =

0, 'tz tpax
Then the density function of T* is:
prx(t) = pr(t) + QpS(t-ty,yx)

Therefore the average value of T* is given by:

o0

T* = /t prs (t) dt
to
P tmax
= —~ft Qi(t) dt + ﬁ Kot-1 at «
dt
to tp
Now K
[1= t10y o #1
Kpft“o de =
{ Kint, op=1
Hence for o # 1,
T = ¢, + Ko ¢l-p t
T Y1 7o max Qetmax
Using (1), we obtain
1/e
T K (1-1/p)
k-
T = C; + o E
For p = 1, ty,. = K/Qg, so TX = C; = K In Qg. Therefore,

L {Czs—AKanE, p =1

xl/e
Cq1 +
173

=P

e(1-1/0)1n Qp

p #1

83

84

From this form we can see the behavier of T* as In Qg varies; plots

for three ranges of p are displayed in Figure 39. Note that for o > 1,
the average of T exists, and so T* approaches a finite limit, namely T.
But for p £ 1, T fails to exist and the average of T* grows without
bound as Qg is made to decrease,

Experimental observations of the behavior of T* as Qg is varied
are presented in Figure 40, Since the non-asymptotic parts of the
distribution of T differ for the two algorithms, the effective value
of K is different. Hence in Figure 42B, while both averages increase
linearly as log Qp decreases, the slopes and intercepts are different,
showing that the initial superiority of the Fano algorithm quickly
disappears, and the Jelinek algorithm becomes the better, its advantage
growing rapidly as Qg is decreased. Thus in the vicinity of Rcomp,
the Jelinek algorithm offers considerable practical advantage. Note,
however, that for the loﬁ noise case, p = .033 (R = 'chomp)’ the
advantage goes to the Fano algorithm. In general, the noisier the
channel, the more favorably does the Jelinek algorithm perform rélative

"to the Fano algorithm.

Pr{T > t}

(log scale)

FIGURE 38. An Asymptotic Pareto Distribution.

in Qg

(log scale)

in QE

ES D D WAy GmD AT <md axes o

p>1

85

In Qg

FIGURE 39. Behavior of T* as a Function of Erasure Probability.

86

[80
— 70 9
Jelinek 5
O
/ 8
2]
o
L}
4
o
E
L 60
£
o
=
86
=
F g
ano S
9
50 2
o
50
)
&
>
b~

40

.03 .06 .10 .30 .60 1.0

Erasure Probability

FIGURE 40A. Performance of Time-limited Decoders, Binary Symmetric
Channel, p = .033,

/

Jelinek

.03 .06 .10 .30 .60

Erasure Probhability

1.0

160

140

120

100

80

60

40

FIGURE 40B. Performance of Time-limited Decoders, Binary Symmetric

Channel, p = .045.

87

(millisecends]

Average Decading Time

Jelinek

0.2

FIGURE 40C.

0.3 0.4

Erasure Probability

0.6

0.8

1.0

160

140

120

100

80

60

40

Performance of Time-limited Decoders, Binary Symmetric

Channel, p = .057.

88

(milliseconds)

Average Decoding Time

CHAPTER IV

APPLICATIONS OF SEQUENTIAL SEARCH ALGORITHMS

TO GRAPH-SEARCHING PROBLEMS

Until now we have focused on sequential decoding as a means of

finding a near-optimum path through a value tree. In this chapter we

consider the problem of finding good paths through more general graphs

in which each branch is assigned a value, and we consider how the

sequential decoding algorithms we have discussed can be applied to

this task. We shall hereafter refer to these procedures as sequential

search algorithms rather than sequential decoding algorithms.

The graphs we will be dealing with in this chapter will exhibit

the following six properties:

Gl:

G2:

G3:

G4:

The graph consists of a finite number of nodes
and branches.

The graph is directed; that is, every branch b
between two nodes s and s' is assigned a direction,
say from s to s'. In this case, b is said to
emanate from s and terminate at s'; s' is called
the successor of s along b, and s is called the

predecessor of s' along b.

There is exactly one node Sg» called the origin
node, which has no predecessor.

There is exactly one node sp, called the final
node, which has no successor.

89

90

G5: The graph is connected in the sense that for any
node s in the graph, s#s;, there is at least one
path from sy to s, and for any node s, s#sp, there
is at least one path from s to sp. In particular,
there is at least one path from s; to sp, provided
that sg#sp. (Here the term 'path from s to s' "
means a sequence of branches by, b,, -+, by such
that b; emanates from s, by terminates at s', and
b; emanates from the node at which b;_; terminates,
i=2, 3, =+, N.

G6: There are no closed paths.*

Conditions G3 and G4 may seem unreasonably restrictive, but for
graphs having several starting and ending nodes, we could think of
adjoining two additional nodes sy and sp and placing a branch of zero
value from sg.to each starting node, and from each final node to sg.
The resulting graph satisfies G3 and G4, and is equivalent to the
original graph for present purposes.

Given a graph satisfying these six conditions, suppose that each
branch is assigned a real number called the branch value. The value
associated with a path is the sum of the values of the branches
comprising the path. Our problem will be to select from among the

set of all paths from sy to sy the path of greatest value.

4. A. OPTIMUM GRAPH SEARCHING
The problem of finding an optimum path through a graph has been

studied by many investigators and several algorithms have been pro-

[17] [18]

posed. See, for example, Dantzig , Busacker and Saaty , Pollack

[19]

and Wiebenson (In the references cited, the term "path length" is

used to mean what we have called 'path value,'" while we have used the

* If such a closed path has negative gain, it is part of no
optimum path, and if it has positive gain, there is no optimum path (of
finite length), so no cases of interest have been excluded by G6.

term "'length" to mean the number of branches in the path.)

Under certain conditions, the optimum path can be found by the
procedure called "dynamic programming' by Bellman20). The trellises
discussed in Chapter I admit a dynamic programming search, and as
omura(21] has noted, the Viterbil22] algorithm for decoding con-
volutional codes is precisely the dynamic programming search of an
appropriate metric trellis.

The algorithms referenced above provide a general soiution to
the problem of finding and evaluating the optimum path through a graph
satisfying G1-G6. The difficulty with this approach is that for
fairly large and complex graphs, the amount of computation required
becomed intolerable. In the next section, we suggest how procedures
which are essentially modifications of the sequential decoding pro-
cedures we have seen can be used to search graphs of the kind we are
considering and select a path with less effort, at the price of some

sacrifice of optimality.

4. B. SUBOPTIMUM GRAPH SEARCHING--SEQUENTIAL SEARCHING

A tree of finite length can be made to satisfy conditions G1-G6
by adjoining an additional final node sy and several zero-value
branches, as discussed on page 90. We will then say that the tree
has been terminated. It is clear that an algorithm which searches
any graph satisfying G1-G6 can also search a terminated tree. The
converse, however, is not evident. Our first task, therefore, will be
to see how the sequential search algorithms, which we have heretofore
considered as tree-search algorithms, can be used on any graph in the

class of graphs satisfying conditions G1-G6.

91

4. B. 1. The Path Tree of a Graph

Given a graph satisfying G1-G6, the set of all paths from sqg to
sg has a natural tree structure. This tree; which we shall call the
path tree of the graph, can be described as follows: For two paths Py
and P, from sy to sp of respective lengths Ly and Lj which have in
common the first k; branches, then diverge, to remerge again at some
node and share the last k, branches to sgp, there are two paths in the
path tree which coincide in the first kq branches, then diverge and
remain separate to the end of the tree. In the path tree there are
two nodes representing the path node at which Py and P, remerge, and
the portions of the tree from these two nodes to the end of the tree
are identical. Thus in the path tree there are as many nodes which
represent a given graph node as there are paths in the graph from sy
to that node. As an example, the graph of Figure 4la has the path
tree of Figure 41b. As another example, the code tree of Figure 3‘is
the path tree of the trellis of Figure 4,

The path trees we obtain in this way do not in general have the
property that every non-final node has the same number of successors,
nor do all paths through the tree have the same length. However, the
sequential search algorithms are still applicable, provided that the

searcher can realize when it is at the end of a path. Therefore we
can define the action of a sequential search algorithm on a graph to
be the action of the algorithm when applied to the graph's path tree.

This at least settles the problem of what it means to search a
graph using the Fano or Zigangirov-Jelinek algorithm, but it would be
unsatisfactory if we had to actually construct the path tree before

performing the search. This is not necessary if certain facts are

93
noted ahout the algorithms.

For the Fano algorithm, suppose the searcher is allowed to keep
track of the path it has followed to its present pesition. (This is
easy to do, and is always done in practice.) Then we can interpret
the instruction "LOOK BACK'" te mean "Look back along the last branch
of the present path," thus resolving the ambiguity of that instruction.
In addition, since node values are computed by adding branch values to
an accumulated sum V, it is clear that these node values are actually
path values, and that if the searcher encounters a node twice from
along different paths, different values (in general) will result.
Finally, the "FIRST VISIT ?" test should be interpreted as a test for
first visit along the present path; in view of the above remarks on
node values, it can be seen that Gallager's test (Figure 9) is such a
test. We can then conclude that the Fano algorithm will search through
the graph exactly as if it were searching the associated path tree.
Consequently the path the algorithm will select is the path it would
select when searching the path tree, namely, the one which satisfies
F1 and F2, (When applying F1 and F2 to graphs, we are obliged to alter
them slightly, since it is no longer possible to specify a path by
enumerating the nodes along the path--we must list the branches com-
prising the path.)

Now, turning to the Zigangirov-Jelinek algorithm, we see that the
first difficulty does not arise since this algorithm only moves forward.
However, since a node may be the successor of more than one node, it is
possible that one.of the successors of the top node on the stack is
already on the stack because of an earlier extension. In this case,

the twe appearances of the node represent different paths (that is,

94

different nodes in the path tree) and in general different values.
If the searcher is allowed to have such multiple occurrences of graph
nodes in the stack, then it will search the graph just as if it were
searching the path tree, and hence it will select a path satisfying
ZJ1 and ZJ2 (when these rules are rephrased as noted before).

Making the analogous argument for the Jelinek and unquantized
Fano algorithms, we can see that applying them to graphs yields paths
satisfying the corresponding conditions.

Incidentally, these observations show that it is immaterial
whether we consider sequential decoding of convolutional codes as a

tree search operation or a trellis search operation.

4. B. 2. Using Remergers to Improve Performance

The previous discussion has shown that our sequential search
algorithms can be applied to graphs with meaningful results, since the
algorithms will search the graphs as if they were searching the
associated path tree. If the searcher encounters the same node twice
from different paths, it does not realize that the node has been
visited before. The question naturally arises whether, if the searcher
were able to recognize revisits along new paths, it could use the
information to be somewhat more selective in searching. We wouI@ like
to avoid searching parts of the path tree if it is known in advance
that the search will be futile.

For simplicity, we consider only the unquantized algorithms. As

an immediate consequence of MF1 and MF2Z we may state:

LEMMA: If bj, b%, *--, bf is the path from sy to s selected by the

F

unquantized Fano searcher, and s, is the node at which bi

95

N * * . * 3
terminates, then bk+1’ bk+2’ , bL is the path the searcher would
select if it were started at node Sk and constrained not to move

backward from node Sy -

If we assume that ties are resolved in a consistent manner, then
an analogous statement can be made about the Zigangirov-Jelinek
searcher.

Now let s be a node in the graph and let by, by, ---, by be the
branches along the path the searcher would select if started as s and
prevented from moving back from s. Let by, by, ---,b, and bi, bé,"',

by be two different paths from Sg to s such that bj # b, b, # bps

and b; = bi for i < j. (See Figure 42.)

1

i
n m

Let V(s) = Z v(bi) and V' (s) = Z v(bi), where the quantities

i=1 i=1

v(bi) and v(bi) are the branch values; thus V(s) and V'(s) are the

values at node s along the unprimed and primed paths, respectively.

THEOREM 9: If the unquantized Fano searcher moves to s along the
unprimed path and V(s) > V'(s), then the primed path
bi, bé, “',bé is not the initial segemnt of the path

selected.

Proof: If the searcher never moves to s along the primed path,

the claim is obvious. If by, by, ---, ijl is not the initial segment
of the selected path, the claim is again obvious. Hence assume that
node sq in Figure 42 is on the final path, that bl’ bz, ey, bj—l is
the first segment of that path, and that the searcher eventually

reaches s along both the primed and unprimed paths., Then by Theorem 8,

if v%in denotes the minimum value seen along the final path from si to

FIGURE 42.

Diverging and Remerging Paths Through a Graph.

96

SF

97
Sps we have

K
min Y vib,) = Vi (5)
j-15ksn i=1 m
k
i ¥ ! 2 yx.
min L vbl) = Viig (6)
J—likém i=1

where if equality holds in (5), then bj must be better than the jth
branch of the selected path, or else it must be the jth branch of the

selected path, and similarly for equality in (6).

jere b,by, ", Bﬁ simply P,
, *++, b',b, ---, b, P,
{ ML N Suppose that

the minimum node value along P is assumed at or past s; that is,

Let us call the path bj’ b

and the other path b!, b!
J j+

k
V(s) +) V(B&) for some k 2 0
i=1

min along P

Then since V(s) > V (s),

k

min along P 2 V'(s) +) v(b))
i=1
2z min along P'
By the lemma, if bj, b3+1, ey bé were part of the final path,

then P' would be the final path from s; to sg. But since the minimum
along P exceeds that along P!, P' does not satisfy MF2. Hence the
primed path is not part of the final path.
Now suppose that the minimum along P is assumed between s; and s.
Then
k

min along P = . min< .Z v(bi)
j-1=k=n i=1

Hence by (5},

min along P 2 Vi, (7

But Vi:, is the greatest such minimum, so equality must hold in (7).
Now if P is not actually the last segment of the final path. it is

because there is another path of minimum value V*. whose first

min

branch after s; is ordered better than b But if this were so, s

j.
would never be reached along the unprimed path, contradicting the
assumption. Therefore P must be the last segment of the final(path,

precluding the appearance of b}, b!

j12 *» by in that path. This

proves the theorem.

Based on Theorem 9, we can make some observations about what a
clever unquantized Fano searcher should do in certain circumstances.
Suppose that provision is made for storing a value U(s) corresponding
to each node s in the graph, and that the searcher is allowed to
modify U(s) upon each visit to s. Say that the searcher arrives at
node s for the first time with value V. The searcher sets U(s) =V
and begins F searching. Suppose that the searcher is eventually forced
back to s, then back from s along the path on which it moved to s.

Now suppose that later in the process the searcher arrives at s again,
this time along a path whose last branch is not the last branch of the
previous path to s, and with a different value V'. If V' < U(s), then
by Theorem 9, we know that F searching is fruitless, since the present
path to s is not the initial part of the path selected. Hence the
searcher should just move back immediately, as if the threshold would
have been violated by an F move. This way, some futile computations

are avoided.

98

99
If V! = U(s), although we did not show it, it can be verified

that in Theerem 9, if V'(s) = V(s) and the searcher reaches s along the
unprimed path first, then the primed path is not part of the final
path. Thus the searcher should take the same action as in the case

V' < U(s).

On the other hand, if V' > U(s), we know that the original path
to s is not the initial parf of the selected path, while the new path
to s might be. Thus the prescribed F searching must be done. In
addition, the searcher should set U(s) = V!'.

It is clear therefore that U(s) at any time is the greatest value
with which the searcher has ever arrived at node s on any path up to
that time. With this in mind, we might initialize all the U(s) to -,
Then upon each visit to s the searcher will compare the current value
V to U(s) to decide whether F searching should be attempted and
whether U(s) should be updated.

A flowchart of this Fano graph searcher is given in Figure 43.
Unfortunately, the requirement for a storage location for each node
examined makes us forfeit one of the principal advantages of Fano-type
searches, namely the small memory requirements.

If we are willing to make the assumption that ties are resolved
consistently we can prove a theorem analogous to Theorem 9 for the
Zigangirov-Jelinek algorithm, and make analogous observations about
expediting the search. The corresponding change in the algorithm is
that step (1) should be replaced by the following procedure:

(1a) Compute the values of all successors of the top
node and put in the stack any successors which

have never appeared before. For the remaining
SUCCessors:

V=20
T=20
K = -~=
U(s) = -=
for all s
l
LOOK FORWARD LOOK FORWARD ON
ON BEST BRANCH NEXT BEST BRANCH

\1’10
2 T?

lmaX{K, V+bp} » K|

| TOOK
o BACK
) no (=]
Vebp > U(sp)? g
yes
V+bF > U(spﬂ
(‘ Vibp > T | no V-by > T
- K~ T
MOVE K = - L""“"‘j
FORWARD MOVE
Veb, + v BACK
T V—bB >V
Vi A
IS THERE
A NEXT BEST

BRANCH 7

sp: Successer of present node along by

FIGURE 43. Unquantized Fano Graph Search Algorithm.

101
-~ If the node appeared befere but has since been
deleted, put the new node in the stack only if
its value is greater than its value at the
previous appearance.
-~ If the node appeared before and remains in the
stack, reatin only the appearance of higher
value.

There seems to be no simple way to implement step (1a) of the

algorithm.

4. B, 3. Biasing Branch Values

In our discussion of sequential decoding in Chapter I, we noted
that a bias term was added to the branch metrics to make the correct
path tend to increase and incorrect paths tend to decrease in value.
In order for the sequential search procedures to produce a reasonably
good path it is necessary to bias the branch values in such a way
that the path satisfying our sets of conditions does in fact have a
large terminal value.

Suppose that all the branch values are bounded, say m s v(b)

HA
=

for all b. We want to replace each branch value v(b) by a biased
branch value v(b) - B.

If we choose B = m, then each biased branch value is non-negative.
Therefore with regard to the sets of conditions, all paths emanating
from a node s have the same minimum value, namely the value at node s.
Hence the choice of final path is arbitrary with the Zigangirov-Jelinek
algorithm and is made only on the basis of comparing single branch
values with the unquantized Fano algorithm. There is very little
reason to hope that the path selected with this bias is a good path.
The process of searching is quite simple, however, requiring only a

single computation per branch.

102

At the other extreme, taking B 2 M, each branch value is non-
positive so that every path assumes its minimum at the end of the
path, i.e., at sg. For a path by, by, ***, by the biased value is
) .
_zlv(bi) - LB; thus a path is selected on the basis of a compromise
i=
between length and value. As B + =, the searcher selects the shortest
path, and if there is more than one, the best of them is chosen. If
all paths are of the same length, with any B Z M the path selected is
optimum. The catch is that as B increases, searching becomes more
difficult, and for B Z M, virtually every node in the graph is
examined, so that the sequential search algorithms offer no improvement
over the optimum search algorithms.

This shows that the choice of bias results in a tradeoff between
computational difficulty and nearness of the final path to optimality.
A reasonable value of B must lie in the range m < B < M, but the exact

value depends on the particular problem at hand and the level of

performance demanded.

4, C. AN EXAMPLE

Figures 44-47 give an example of graph-searching by means of the
unquantized Fano algorithm. There are two optimum paths through the
graph, shown in heavy lines in Figure 44.

The action of the Fano searcher on the unbiased graph is displayed
in Figure 45. Nodes which are encircled are those visited during the
search. Arrows along branches indicate F looks along those branches.
The path chosen is not optimum, but has a value of -1; the optimum

path value 1s zero.

103

When all branch values are biased by 1, the Fano searcher selects
one of the optimum paths, as shown in Figure 46. In this case, more
forward looks are required than before, but the same number of nodes
are visited.

When the bias is increased to 2 (Figure 47), the searcher
selects the other optimum path. Of course, since this path is shorter
than the previous one, it would be possible to force its selection -

even if it were not optimum.

104

FIGURE 44. A Graph with Two Optimum Paths.

FIGURE 45. Sequential Search of the Graph of Figure 44 with Zero Bias.

105

FIGURE 46. Sequential Search of the Graph of Figure 44 with Bias = 1.

FIGURE 47. Sequential Search of the Graph of Figure 44 with Bias = 2.

APPENDIX A

SUMMARY OF THE LOWER-BOUND ARGUMENT
FOR Pr{Cy 2 N}

In this appendix, we give a brief summary of the argument used
by Jacobs and Berlekamp[S], making a minor modification in the
argument. Many of the equations and inequalities hold asymptotically;
that is, we may have x 2 y + O(r), where O(r) + 0 as v +~ ». In this
case we put x 2 y, and it will be clear from context what quantity is
growing large. All logarithms (and hence rates) will be taken to the
natural base.

Suppose we have a block code of length n and M = e™R codewords.

A maximum likelihood list-of-N decoder is one which maps the received
sequence into a list of the N most likely transmitted sequences, given
the received sequence. A list decoder makes an error if the actual
transmitted sequence is not on its list. Shannon, Gallager, and
Berlekamp[23] have shown that the probability of error with list

decoding is lower-bounded as follows:

e

Po(N) 2 enEsp@®) (1

where (R = %.ln(M/N) R - %-ln M is the list decoding rate and

106

107

E,,(® = 1ub {E;(p) - oR}, Eq(o) being given by (I-2).

p20

Now suppose Eo(p) is convex; if it is not, it can be replaced by
its convex hull and the present analysis is unchanged. By differ-

entiating with respect to p, we obtain
Esp(@-) = EO(Q*) e D*a

where p* is the solution of & = Eb(p). Suppose we are given p and the

list size N. It is possible to make R 2 Ej(p) by choosing

M > nE§(pe)

N = e (2)
Then Esp(db < Eqle) - o < Eg(p) - pEj(p), a fact which is most
easily seen with the aid of a graph. Thus by (1),

s .-n[Eg(p) - pE}]
P,(N) £ e 0(e) - pEj(p) (3)
Given a tree code of rate R with v symbols per branch, we obtain

a block code of rate R and length n by terminating the tree after n/v

branches (assuming for simplicity that n is a multiple of v). For a

given N, if we choose n to be the least multiple of v such taat

N £ eN[R - Ej(p)] 4)

where p is the solution of R = Eo(p)/p, then (2) is satisfied and so

(3) holds. Thus

v

e-N[Eg(p) - pE§(p)]

= onIR - Eg(e)]lp

Pe(V)

v

N™P

where (4) is used in the last step.

108

Jacobs and Berlekamp argue as follows. Suppose a certain
sequence is received. By JB2, only the first n digits of the received
sequence affect the decoder's operation up to depth n/v. The
probability that N computations are performed is at least as great,
by JB1, as the probability that at least N paths through the tree are
examined to depth n/v before the correct path is reached, that is, the
probability that the correct path lies among the last M-N paths

MR This last quantity is given by the sum

considered, where M = ¢
over the last M-N paths examined of the probability of receiving the
given sequence conditioned that that path was sent. But this is at
least as great as Pe(N) for this received sequence, since Pe(N) is
obtained by summing this conditional probability over the M-N paths for

which it is minimum. This holds for all received sequences, so if C

is the computation to decode the first n/v branches, then
Pr{C 2N} 2 P_(N) % NP (5)

The above argument can be modified to yield a lower bound on the
distribution of Cj, the computation required to decode the first branch,
rather than a lower bound on C as given by Jacobs and Berlekamp. The
solution is to truncate the tree code and form a block code in such
a way that only nodes whose examination is chargeable to Cj are
included. Suppose there are u branches emanating from each node. We
truncate the tree as before, but also prune the part of the tree
starting with the first correct branch, but leaving in the correét

path. See Figure 48. The number of codewords in this block code is

= /v _ .n/v -1 _ u-1 ,yn/v
MT u u +1__ﬁ__u

109

i
— o —
t
. -
-8
el
- ; aEah 0 S GRED N
pus——"
N
et} e R
- {
g / [
po—
N
L] \-
! o .
: —
correct A -
path :
-~ H

FIGURE 48. The Truncated Tree for Deriving a Lower Bound on Pr{Co 2 N}.
The Set of Mr Codewords in the Truncated Code Consists of

All Paths Above the Dashed Line, As Well As the Correct
Path.

110

1 u-1
1 + = R
nu = In - +

1 K u-1
so that Ry = ﬁ.ln My = In -~

=B
<|s
B

Since RT = R, the same argument holds; by excluding all nodes whose
examination should be charged to decoding other branches than the first,

we have not affected the rate asymptotically, so
Pr{Co 2 N} 2 N-P
Note that from (4), we must be able to choose

1 In N

N 2 e
R - Ej(p)

in order to derive the lower bound on Pr{Cg % NI, so that (1-6) holds

when

That is, in applying the lower bound to Cp(L) for finite trees, the
range of N for which the bound holds grows exponentially with the tree

length L.

APPENDIX B

THE JELINEK DECODER PROGRAM

We now describe in some detail the operation of the Jelinek
decoder as we have programmed it on the UNIVAC 1107, in the hope that
the techniques may be of use to other investigators.

In order to extend from a node, three items must be known: the
value at the node, its depth into the tree, and the encoder state at
the node. The encoder state is necessary to produce the code symbols
on the branches emanating from the node; the depth is needed to com-
pare these code symbols with the proper span of symbols in the received
sequence; and the branch values arising from this comparison must be
added to the value of the extended node to yield the new node values.
Therefore, for every node the decoder encounters, the value, depth,
and encoder state must be saved so that the node can be extended, if
necessary.

For the top node on the stack (i.e., one of the nodes in the
highest non-empty bin) these items are kept in three accumulators
which are given the symbolic labels VALUE, DEPTH, and STATE. For
other nodes on the stack, the information is contained in what we call

node descriptions, which occupy six contiguous words of computer memory,

111

112

in which are stored, respectively, the node's value, depth, encoder
state, a stack pointer, a path pointer, and a flag. (The last three
items will be discussed later.)

Initially the top node is the origin node, which is at depth zero,
and the encoder state is zero. Thus DEPTH and STATE are initially set
to zero. Thelvalue of the origin node is usually considered to be
zero, but it is convenient to avoid the possibility of encountering
nodes of negative value. We therefore bias the node values by
initializing VALUE to a sufficiently large number so that, with over-
whelming probability, no node placed on the stack has negative value.

As the search through the tree proceeds, the nodes encountered
are added to the stack, and the necessary information saved, either
as the contents of the three designated accumulators or in stored
node descriptions (or both). Once a node description is ;tored it is
never physically deleted from memory, even if the node reaches the
top of the stack and is extended. Therefore there are many node
descriptions resident in memory representing nodes which are no longer
on the stack, by virtue of step (Zj of the algorithm. On the other
hand, every node on the stack (except possibly the top node) is
represented by a node description. The determination of which of the
resident node descriptions represent nodes still on the stack, and
the ordering of the stack contents into bins, are the functions of the
stack pointers and an array called the bin index. The bin index con-
sists of two entries for each bin: the first is the number of nodes
in the bin; the second is the address of the first word ef the node

description corresponding to one of the nodes in the bin. The stack

pointer in this node description contains the address of the first

113
word of the node description for another node in the bin, and so on.

(The stack pointer in the description of the last node in the bin is
meaningless.) Therefore, the contents of bin k can be found successively
by using the second entry of the bin index corresponding to bin k and
the stack pointers in the node descriptions referenced. In order to
place an upper bound on the number of bins and hence on the size of
the bin index array, a lowér bound must be set on the bin spacing H.
We require H to be at least as great as the maximum positive branch
value.

To see how decoding proceeds, let us first restrict ourselves to
the BSC and to the use of complementary codes, i.e., codes in which
the code symbols on the 1 branch emanating from aﬁy node are comple-
ments of the symbels on the 0 branch® Then when the top node is
extended and the two branches compared to the received sequence, only
two outcomes are possible: either (1) one branch agrees with the
received sequence in both digits and the other disagrees in both, or
(2) each branch disagrees in exactly one digit. We consider the two
cases separately.

Case (1). We call this the typical case since almost all
extensions of nodes on the correct path and roughly half the extensions
of nodes not on the correct path are of this kind. Table 2 shows that
the branch value for the branch with two agreements will be +4 (or +8
on the third BSC), so that the value of the corresponding node exceeds
the value of the extended node. Since the extended node was in the
highest non-vacant bin, and its successor along the +4 (+8) branch

belongs in the same or a higher bin, we may take the successor to be

* An equivalent'condition is that neither generator begin with a
zero.

114
the new top node and adjust VALUE, DEPTH, and STATE accordingly; there
is no need to store its description. For the other successor, however,
we must store a node description. The first three items in the
description can be gotten easily from the contents of VALUE, DEPTH,
and STATE and the branch value. To set the stack pointer, we note
that a node of value V belongs to bin k if kH £ V < (k+1)H. That is,
the correct value of k is the integer part of V/H. We restrict H to

be a power of 2, say H = 2T

, so that k can be found by a simple r-bit
shift operation., Having found the bin to which the node belongs, we
use the bin index: increase the bin count by one, set the stack pointer
of the new node description to the address presently specified in the
bin index, and reset the bin index pointer to the address of the first
word of the new node description. Thus after insertion, the bin index
pointer points to the new description and the stack pointer of the new
description points to the description which had been referenced by the
bin index pointer. After setting the path pointer and flag, which we
discuss later, we are ready to extend again using the updated contents
of VALUE, DEPTH, and STATE.

Case (2). Since both branch values are negative, it is likely
that there are nodes on the stack in bins higher than the bins to which
the two successors belong. Therefore the new top node is not readily
available as it is in Case (1) -- we must search for it. First the
two new nodes are stored in the same way the one was stored in Case (1).
Then the decoder scans down the bin index, starting with the bin to
which the extended node belonged, looking for a bin whose count is non-
zero, When the first non-empty bin is located, its count is decreased

by one, VALUE, DEPTH, and STATE are loaded from the node description

115

referenced by the bin index pointer, and the bin index pointer is reset
to the address contained in the stack peinter of that node description.
Thus the nede which had been the second node in the bin is now
referenced by the bin index. The decoder is now ready to extend

again.

We turn now to the Gaussian channel, leaving in force the res~
triction to complementary codes®. It is no longer meaningful to use
the terms "agreement' and ''disagreement,' but from Table 2 we see that
there are still two cases: either (1) one branch value is non-
negative and the other is negative, or (2) both are negative. It is
clear that the same decoder actions described above are applicable
on the Gaussian channel.

A transmitted frame as programmed consists of 256 branches
corresponding to encoded information bits followed by a 35-branch tail
corresponding to an encoded memory span of Os, included to prevent
high error probability in the last few information bits. The search
in the tail differs from that in the information part of the tree in
that only the successor along the 0 branch is considered. The two
kinds of computations are still performed: if the branch value is non-
negative there is no storage and the successor is extended immediately;
if the branch value is negative, the successor is stored and a search
for the new top node is undertaken.

If the contents of DEPTH is 291, this indi;ates that the top node
is at the end of the tree and the search is completed. This brings up
the problem of recovering the information symbols on the path chosen.

If a description had been stored for every node examined, then the

* This is no sacrifice, since only complementary codes would be

used in practice.

116
path pointer in every node descriptien could have heen set to the
address of the descriptien of its predecessor; Then the path pointers
would specify the path from the final node back to the origin. Since
typically only one node is stored, this is impossible. However, at
every extension at least one node is stored, and therefore for every
node encountered, either its predecessor or the complement of its
predecessor (or both) is stored. Thus we set the path pointer in
each node description to the address of the description of the pre-
decessor if it is stored, or, if it is not, to the address of the
description of the complement of the predegessor, and we use the sixth
element of the node description, the flag, to indicate whether the
node referenced by the path pointer is the predecessor or its com-
plement. Now when the top node is at the end of the tree, the decoder
can step back toward the origin using the path pointers, flags, and
encader states to produce the information sequence along the path -
selected.

Figure 49 illustrates the pattern of extensions and storage by the
decoder program for a typical segment of a tree with branch values for

the BSC, p = .033. The extensions are numbered sequentially.

117

2
11 >
Noe—r—"1
0 +4 1/ =36
1‘F§=A<--. [:—"'i=l'
L gy *
16 7 -36 °
5 g
O ”
5
XS
7 N a //'
-16 /’ -16 is 16
o=
// -16 °
2 -
0 e
+4 N } (TN 16
1 16 4 -16 . ~
H>7 /X 3 +4 N N/ =
b ¢
NXe tx
-36 / N -16

/f{Eifzﬁ' - A node which is extended
,45553::7 -~ A node for which a description is

stored
-~ - -~ -- A path pointer
r == An indicator that the path pointer
references the complement of the
predecessor

FIGURE 49. A Typical Search by the Jelinek Decoder.

10.

11.

12.

13.

14,

15.

REFERENCES

G. D. Forney, Jr., "Final Report on a Coding System Design for
Advanced Solar Missions," Codex Corp., Watertown, Mass.,
Contract NAS2-3637, December 1967, Appendix A.

J. M. Wozencraft, "Sequential Decoding for Reliable Communication,"

IRE Convention Record, 1957, Part 2, pp.11-25.

I. M. Jacobs and E. R. Berlekamp, "A Lower Bound to the Distri-
bution of Computation for Sequential Decoding,' IEEE Trans. on
Information Theory, Vol. IT-13, pp. 167-174, April 1967.

J. E. Savage, "The Computation Problem with Sequential Decoding,"
MIT Lincoln Laboratory Technical Report No. 371, February 1965.

R. M. Fano, "A Heuristic Discussion of Probabilistic Decoding,"
IEEE Trans. on Information Theory, Vol. IT-9, pp. 64-74, April
1963. :

K. Sh. Zigangirov, "Some Sequential Decoding Procedures," Prob-
lemy Peredachi Informatsii, Vol. 2, No. 4, pp. 13-25, 1966.

F. Jelinek, "A Fast Sequential Decoding Algorithm Using a
Stack,'" IBM J. Res. Dev., Vol. 13, pp. 675-685, November 196S.

J. M. Wozencraft and I. M. Jacobs, Principles of Communication
Engineering. New York: Wiley, 1965.

R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

D. D. Falconer, "A Hybrid Sequential and Algebraic Decoding
Scheme,'" Ph.D. Dissertation, MIT, February 1967.

F. Jelinek, '"An Upper Bound on Moments of Sequential Decoding
Effort,'" IEEE Trans. on Information Theory, Vol. IT-15, pp. 140-
149, January 1969.

H. L. Yudkin, "Channel State Testing in Information Decoding,"
Sc.D. Dissertation, MIT, September 1964.

J. L. Massey and M. K. Sain, "Trunk and Tree Searching Properties
of the Fano Sequential Decoding Algorithm," Proc. 6th Annual
Allerton Conf., pp. 153-160, Univ. of Illinois, October 1968.

J. L. Massey and M. K. Sain, '"Distribution of the Minimum Cum-
ulative Metric for Sequential Decoding," International Symposium
on Information Theory, Ellenville, N. Y., January 1969.

J. L. Massey, Private communication.

118

16.

17.

18.

19.

20.

21.

22.

23.

119

D. J. Costello, '"Construction of Convolutional Codes for Sequen-
tial Decoding," University of Notre Dame Technical Report No.
EE-692, August 1969.

G. B. Dantzig, "On the Shortest Route Through a Network,' Mgmt.
Sci., Vol. 6, pp. 187-190, January 1960.

R. G. Busacker and T. L. Saaty, Finite Graphs and Networks. New
York: McGraw-Hill, 1965.

M. Pollack and W. Wiebenson, "Solutions of the Shortest-route
Problem: A Review,' Operations Res., Vol. 8, pp.224-230, 1960.

R. E. Bellman, Dynamic Programming. Princeton, N. J.: Princeton
University Press,1957.

J. K. Omura, "On the Viterbi Decoding Algorithm," IEEE Trans. on
Information Theory, Vol. IT-15, pp. 177-179, January 1969.

A. J. Viterbi, "Error Bounds for Convelutional Codes and an
Asymptotically Optimum Decoding Algorithm," IEEE Trans. on Infor-
mation Theory, Vol. IT-13, pp. 260-269, April 1967.

C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower Bounds
to Error Probability for Coding on Discrete Memoryless Channels,"
Information and Control, Vol. 10, pp. 65-103, 522-552.

